XL
Xinyuan Li
Author with expertise in Battery Recycling and Rare Earth Recovery
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
590
h-index:
29
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Concurrent manipulation of competitive mechanisms to construct glutathione-stabilized gold nanocluster-based dual-channel molecular classifier for metal ions detection and information steganography

Xinyuan Li et al.Jul 1, 2024
Understanding charge transport in metal ion-mediated glutathione-stabilized gold nanoclusters (GSH-Au NCs) has proved difficult due to the presence of various competitive mechanisms, such as electron transfer (ET) and aggregation induction effect (AIE). In this paper, we present a dual-channel fluorescence (FL) and second-order Rayleigh scattering (SRS) sensing method for high-throughput classification of metal ions, relying on the competition between ET and AIE using GSH-Au NCs. The SRS signals show significant enhancement when Pb2+, Ag+, Al3+, Cu2+, Fe3+, and Hg2+ are present, as a result of the aggregation of GSH-Au NCs. Notably, the fluorescence signal exhibits the opposite trend. The FL intensities of GSH-Au NCs are enhanced by Pb2+, Ag+, and Al3+ through the AIE mechanism, while they are quenched by Cu2+, Fe3+, and Hg2+, which is dominated by the ET mechanism. By employing principal component analysis and hierarchical cluster analysis, these signals are transformed into unique fingerprints and Euclidean distances, respectively, enabling successful distinction of six metal ions and their mixtures with a low detection limit of 30 nM. This new strategy has successfully addressed interference from impurities in the testing of real water samples, demonstrating its strong ability to detect multiple metal ions. Impressively, we have achieved molecular cryptosteganography, which involves encoding, storing, and concealing information by transforming the selective response of GSH-Au NCs to binary strings. This research is anticipated to advance utilization of nanomaterials in logic sensing and information safety, bridging the gap between molecular sensors and information systems.
0

Gadolinium-doped SrFeO3 As a Highly Active and Stable Electrode for Symmetrical Solid Oxide Fuel Cells

Xinyuan Li et al.May 31, 2024
Symmetrical solid oxide fuel cells (SSOFCs) with identical electrodes have gained interesting attention because of their simplified fabrication procedure and reduced processing costs. However, their development is limited by their electrocatalytic activity and stability of the electrode materials used. Here, we report a prototypical SrFeO3-δ-based perovskite oxide with formula GdxSr1-xFeO3-δ (GSF) as a highly effective SSOFC electrode material. It was found that A-site Gd substitution in SrFeO3-δ greatly improved its structural stability under reducing atmosphere. Furthermore, doping Gd was able to significantly enhance the electrochemical activity, achieving area specific resistances of 0.18 Ω cm2 for the cathode and 0.003 Ω cm2 for the anode at 800 °C, respectively. The lower polarization resistance could be attributed to the abundant surface oxygen species through the Gd-doping in SrFeO3-δ. Benefiting from superior electrochemical activity and structural stability, the symmetrical cell with GSF-0.2 electrode showed reasonable stability and electrochemical performance. These results show that the developed GSF perovskite oxide may be a promising candidate as electrode material for symmetrical SOFCs.
0

Inhibition of wax crystallization and asphaltene agglomeration by core-shell polymer@SiO2 hybride nano-particles

Xinyuan Li et al.Jun 1, 2024
The gelation of crude oil with high wax and asphaltene content at low temperatures often results in the block of transportation pipeline in Africa. In recent years, it was reported that surface hydrophobic-modified nanoparticles have important applications in crude oil flow modification. In this work, four kinds of core-shell hybride nanoparticles by grafting poly (octadecyl, docosyl acrylate) and poly (acrylate-α-olefin) onto the surface of nano-sized SiO2 were synthesized by grafting polymerization method. The chemical structure of nanoparticles was analyzed by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The rheological behaviors of crude oil and precipitation of asphaltenes in the presence of nanoparticles were studied by measuring the viscose-temperature relationship curve, the cumulative wax precipitation amount, and morphology of waxes and asphaltenes. The results indicate that the docosyl polyacrylate@SiO2 nanoparticle (PDA@SiO2) can reduce the cumulative wax precipitation amount of crude oil by 72.8%, decline the viscosity of crude oil by 85.6% at 20 °C, reduce the average size of wax crystals by 89.7%, and inhibit the agglomeration of asphaltene by 74.8%. Therefore, the nanoparticles not only adjust the crystalline behaviors of waxes, but also inhibit the agglomeration of asphaltenes. Apparently, core-shell hybride nanoparticles provides more heterogeneous nucleation sites for the crystallization of wax molecules, thus inhibiting the formation of three-dimensional network structure. The core-shell polymer@SiO2 hybride nanoparticles are one of promising additives for inhibiting crystallization of waxes and agglomeration of asphaltenes in crude oil.
0

Transition metal vacancy and position engineering enables reversible anionic redox reaction for sodium storage

Congcong Cai et al.Jan 2, 2025
Triggering the anionic redox reaction is an effective approach to boost the capacity of layered transition metal (TM) oxides. However, the irreversible oxygen release and structural deterioration at high voltage remain conundrums. Herein, a strategy for Mg ion and vacancy dual doping with partial TM ions pinned in the Na layers is developed to improve both the reversibility of anionic redox reaction and structural stability of layered oxides. Both the Mg ions and vacancies (□) are contained in the TM layers, while partial Mn ions (~1.1%) occupy the Na-sites. The introduced Mg ions combined with vacancies not only create abundant nonbonding O 2p orbitals in favor of high oxygen redox capacity, but also suppress the voltage decay originated from Na–O–□ configuration. The Mn ions pinned in the Na layers act as "rivets" to restrain the slab gliding at extreme de-sodiated state and thereby inhibit the generation of cracks. The positive electrode, Na0.67Mn0.011[Mg0.1□0.07Mn0.83]O2, delivers an enhanced discharge capacity and decent cyclability. This study provides insights into the construction of stable layered oxide positive electrode with highly reversible anionic redox reaction for sodium storage. Sodium layered metal oxides suffer from irreversible structural deterioration at high voltage in sodium-ion batteries. Here, authors develop a magnesium ion and vacancy dual-doping strategy to enhance the anionic redox reversibility and structural stability of layered oxides.