Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
MM
Mehdi Mehrali
Author with expertise in Solar Thermal Energy Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(33% Open Access)
Cited by:
2,798
h-index:
55
/
i10-index:
90
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets

Mohammad Mehrali et al.Jan 13, 2014
In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems.
0

Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite

Mohammad Mehrali et al.Jan 3, 2013
This paper mainly focuses on the preparation, characterization, thermal properties and thermal stability and reliability of new form-stable composite phase change materials (PCMs) prepared by vacuum impregnation of paraffin within graphene oxide (GO) sheets. SEM and FT-IR techniques and TGA and DSC analysis are used for characterization of material and thermal properties. The composite PCM contained 48.3 wt.% of paraffin without leakage of melted PCM and therefore this composite found to be a form-stable composite PCM. SEM results indicate that the paraffin bounded into the pores of GO. FT-IR analysis showed there was no chemical reaction between paraffin and GO. Temperatures of melting and freezing and latent heats of the composite were 53.57 and 44.59 Â°C and 63.76 and 64.89 kJ/kg, respectively. Thermal cycling tests were done by 2500 melting/freezing cycling for verification of the form-stable composite PCM in terms of thermal reliability and chemical stability. Thermal conductivity of the composite PCM was highly improved from 0.305 to 0.985 (W/mk). As a result, the prepared paraffin/GO composite is appropriate PCM for thermal energy storage applications because of their acceptable thermal properties, good thermal reliability, chemical stability and thermal conductivities.
0

Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite

S. Baradaran et al.Dec 9, 2013
As a result of the growing interest in the biological and mechanical performance of hydroxyapatite (HA)–graphene nano-sheets (GNs) composite systems, reduced graphene oxide (rGO) reinforced hydroxyapatite nano-tube (nHA) composites were synthesized in situ using a simple hydrothermal method in a mixed solvent system of ethylene glycol (EG), N,N-dimethylformamide (DMF) and water, without using any of the typical reducing agents. The consolidation process was performed by hot isostatic pressing (HIP) at 1150 Â°C and 160 MPa. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, enabling confirmation of the synthesis and reduction of the nHA and rGO, respectively. The structure of the synthesized powder and cell attachment on the sintered sample was confirmed by field emission scanning electron microscopy (FESEM). The effects of the rGO on the mechanical properties and the in vitro biocompatibility of the nHA based ceramic composites were investigated. The elastic modulus and fracture toughness of the sintered samples increased with the increase of the rGO content when compared to the pure nHA by 86% and 40%, respectively. Cell culture and viability test results showed that the addition of the rGO promotes osteoblast adhesion and proliferation, thereby increasing the biocompatibility of the nHA–rGO composite.
Load More