YH
Yizhong Huang
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
31
(26% Open Access)
Cited by:
5,091
h-index:
65
/
i10-index:
280
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Jilei Liu et al.Nov 17, 2014
The development of portable and wearable electronics has promoted increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features. Here, a new type of flexible Ni/Fe cell is designed and fabricated by employing Ni(OH)2 nanosheets and porous Fe2O3 nanorods grown on lightweight graphene foam (GF)/carbon nanotubes (CNTs) hybrid films as electrodes. The assembled f-Ni/Fe cells are able to deliver high energy/power densities (100.7 Wh/kg at 287 W/kg and 70.9 Wh/kg at 1.4 kW/kg, based on the total mass of active materials) and outstanding cycling stabilities (retention 89.1% after 1000 charge/discharge cycles). Benefiting from the use of ultralight and thin GF/CNTs hybrid films as current collectors, our f-Ni/Fe cell can exhibit a volumetric energy density of 16.6 Wh/l (based on the total volume of full cell), which is comparable to that of thin film battery and better than that of typical commercial supercapacitors. Moreover, the f-Ni/Fe cells can retain the electrochemical performance with repeated bendings. These features endow our f-Ni/Fe cells a highly promising candidate for next generation flexible energy storage systems.
0

Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H2 Evolution and CO2 Reduction

Wenguang Tu et al.Jul 5, 2017
Vacancy engineering, that is, self-doping of vacancy in semiconductors, has become a commonly used strategy to tune the photocatalytic performances. However, there still lacks fundamental understanding of the role of the vacancies in semiconductor materials. Herein, the g-C3N4 nanosheets with tunable nitrogen vacancies are prepared as the photocatalysts for H2 evolution and CO2 reduction to CO. On the basis of both experimental investigation and DFT calculations, nitrogen vacancies in g-C3N4 induce the formation of midgap states under the conduction band edge. The position of midgap states becomes deeper with the increasing of nitrogen vacancies. The g-C3N4 nanosheets with the optimized density of nitrogen vacancies display about 18 times and 4 times enhancement for H2 evolution and of CO2 reduction to CO, respectively, as compared to the bulk g-C3N4. This is attributed to the synergistic effects of several factors including (1) nitrogen vacancies cause the excitation of electrons to midgap states below the conduction band edge, which results in extension of the visible light absorption to photons of longer wavelengths (up to 598 nm); (2) the suitable midgap states could trap photogenerated electrons to minimize the recombination loss of photogenerated electron–hole pairs; and (3) nitrogen vacancies lead to uniformly anchored small Pt nanoparticles (1–2 nm) on g-C3N4, and facilitate the electron transfer to Pt. However, the overintroduction of nitrogen vacancies generates deeper midgap states as the recombination centers, which results in deterioration of photocatalytic activities. Our work is expected to provide new insights for fabrication of nanomaterials with suitable vacancies for solar fuel generation.
0

Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors

Ching‐Yuan Su et al.Aug 18, 2010
Solution-based processes involving the chemical oxidation of graphite and reduction of the obtained graphene oxide (GO) sheets have attracted much attention for preparing graphene films for printed electronics and biosensors. However, the low electrical conductivity of reduced GO is still hindering the development of electronic applications. This article presents that GO sheets reduced by high-temperature alcohol vapors exhibit highly graphitic structures and excellent electrical conductivity. The sheet resistance of thin transparent films is lowered to ∼15 kΩ/◻ (>96% transparency). Field-effect transistors produced from these reduced GO sheets exhibit high effective field-effect hole mobility up to 210 cm2/V·s. Raman spectroscopic studies reveal that the conductivity enhancement in the low mobility regime is attributed to the removal of chemical functional groups and the formation of six-fold rings. In the high mobility regime, the growth of the graphitic domain size becomes dominant for enhancing its electrical conductivity. The excellent electrical conductivity of the reduced GO sheets promises potential electronic applications.
Load More