AL
An Liu
Author with expertise in Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(23% Open Access)
Cited by:
2,205
h-index:
46
/
i10-index:
157
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor Networks

An Liu et al.Apr 1, 2008
Public key cryptography (PKC) has been the enabling technology underlying many security services and protocols in traditional networks such as the Internet. In the context of wireless sensor networks, elliptic curve cryptography (ECC), one of the most efficient types of PKC, is being investigated to provide PKC support in sensor network applications so that the existing PKC-based solutions can be exploited. This paper presents the design, implementation, and evaluation of TinyECC, a configurable library for ECC operations in wireless sensor networks. The primary objective of TinyECC is to provide a ready-to-use, publicly available software package for ECC-based PKC operations that can be flexibly configured and integrated into sensor network applications. TinyECC provides a number of optimization switches, which can turn specific optimizations on or off based on developers' needs. Different combinations of the optimizations have different execution time and resource consumptions, giving developers great flexibility in integrating TinyECC into sensor network applications. This paper also reports the experimental evaluation of TinyECC on several common sensor platforms, including MICAz, Tmote Sky, and Imotel. The evaluation results show the impacts of individual optimizations on the execution time and resource consumptions, and give the most computationally efficient and the most storage efficient configuration of TinyECC.
0

Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery

Qing Gao et al.May 22, 2015
This study offers a novel 3D bioprinting method based on hollow calcium alginate filaments by using a coaxial nozzle, in which high strength cell-laden hydrogel 3D structures with built-in microchannels can be fabricated by controlling the crosslinking time to realize fusion of adjacent hollow filaments. A 3D bioprinting system with a Z-shape platform was used to realize layer-by-layer fabrication of cell-laden hydrogel structures. Curving, straight, stretched or fractured filaments can be formed by changes to the filament extrusion speed or the platform movement speed. To print a 3D structure, we first adjusted the concentration and flow rate of the sodium alginate and calcium chloride solution in the crosslinking process to get partially crosslinked filaments. Next, a motorized XY stages with the coaxial nozzle attached was used to control adjacent hollow filament deposition in the precise location for fusion. Then the Z stage attached with a Z-shape platform moved down sequentially to print layers of structure. And the printing process always kept the top two layers fusing and the below layers solidifying. Finally, the Z stage moved down to keep the printed structure immersed in the CaCl2 solution for complete crosslinking. The mechanical properties of the resulting fused structures were investigated. High-strength structures can be formed using higher concentrations of sodium alginate solution with smaller distance between adjacent hollow filaments. In addition, cell viability of this method was investigated, and the findings show that the viability of L929 mouse fibroblasts in the hollow constructs was higher than that in alginate structures without built-in microchannels. Compared with other bioprinting methods, this study is an important technique to allow easy fabrication of lager-scale organs with built-in microchannels.
0

A Survey on Fundamental Limits of Integrated Sensing and Communication

An Liu et al.Jan 1, 2022
The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed.
0

3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels

Qing Gao et al.Jan 18, 2017
In this study, 3D hydrogel-based vascular structures with multilevel fluidic channels (macro-channel for mechanical stimulation and microchannel for nutrient delivery and chemical stimulation) were fabricated by extrusion-based three-dimensional (3D) bioprinting, which could be integrated into organ-on-chip devices that would better simulate the microenvironment of blood vessels. In this approach, partially cross-linked hollow alginate filaments loading fibroblasts and smooth muscle cells were extruded through a coaxial nozzle and then printed along a rotated rod template, and endothelial cells were seeded into the inner wall. Because of the fusion of adjacent hollow filaments, two-level fluidic channels, including a macro-channel in the middle formed from the cylindrical template and a microchannel around the wall resulted from the hollow filaments were formed. By this method, different shapes of vessellike structures of millimeter diameter were printed. The structures printed using 4% alginate exhibited ultimate strength of 0.184 MPa, and L929 mouse fibroblasts encapsulated in the structures showed over 90% survival within 1 week. As a proof of concept, an envisioned load system of both mechanical and chemical stimulation was demonstrated. In addition, a vascular circulation flow system, a cerebral artery surgery simulator, and a cell coculture model were fabricated to demonstrate potential tissue engineering applications of these printed structures.
0

On the Design of Secure Non-Orthogonal Multiple Access Systems

Biao He et al.Jul 17, 2017
This paper proposes a new design of non-orthogonal multiple access (NOMA) under secrecy considerations. We focus on a NOMA system, where a transmitter sends confidential messages to multiple users in the presence of an external eavesdropper. The optimal designs of decoding order, transmission rates, and power allocated to each user are investigated. Considering the practical passive eavesdropping scenario where the instantaneous channel state of the eavesdropper is unknown, we adopt the secrecy outage probability as the secrecy metric. We first consider the problem of minimizing the transmit power subject to the secrecy outage and quality of service constraints, and derive the closed-form solution to this problem. We then explore the problem of maximizing the minimum confidential information rate among users subject to the secrecy outage and transmit power constraints, and provide an iterative algorithm to solve this problem. We find that the secrecy outage constraint in the studied problems does not change the optimal decoding order for NOMA, and one should increase the power allocated to the user whose channel is relatively bad when the secrecy constraint becomes more stringent. Finally, we show the advantage of NOMA over orthogonal multiple access in the studied problems both analytically and numerically.
Load More