Advanced MaterialsVolume 12, Issue 10 p. 750-753 Communication Single-Walled Carbon Nanotube–Polymer Composites: Strength and Weakness P. M. Ajayan, P. M. Ajayan Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (USA)Search for more papers by this authorL. S. Schadler, L. S. Schadler Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (USA)Search for more papers by this authorC. Giannaris, C. Giannaris Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (USA)Search for more papers by this authorA. Rubio, A. Rubio Departamento de Física Teórica, Universidad de Valladolid, E-47011 Valladolid (Spain)Search for more papers by this author P. M. Ajayan, P. M. Ajayan Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (USA)Search for more papers by this authorL. S. Schadler, L. S. Schadler Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (USA)Search for more papers by this authorC. Giannaris, C. Giannaris Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (USA)Search for more papers by this authorA. Rubio, A. Rubio Departamento de Física Teórica, Universidad de Valladolid, E-47011 Valladolid (Spain)Search for more papers by this author First published: 22 May 2000 https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6Citations: 1,184AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Can carbon nanotubes be efficient structural reinforcements for high-strength polymer composites? Here it is shown that, during loading, individual single-walled nanotubes pull out of their bundles (see Figure), making load transfer difficult. It is thus concluded that the effectiveness of reinforcement is determined by the stability and collective behavior of the bundles rather than the strength of individual nanotube components. References 1 M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381 678. 10.1038/381678a0 CASWeb of Science®Google Scholar N. G. Chopra, A. Zettl, Solid State Commun. 1998, 105, 297. 10.1016/S0038-1098(97)10125-9 CASWeb of Science®Google Scholar E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 1997, 277 1971. 10.1126/science.277.5334.1971 CASWeb of Science®Google Scholar M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine, Nature 1997, 389 582. 10.1038/39282 CASPubMedWeb of Science®Google Scholar S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 1996, 104, 2089. 10.1063/1.470966 CASWeb of Science®Google Scholar 2 R. S. Ruoff, D. C. Lorents, Carbon 1995, 33 925. 10.1016/0008-6223(95)00021-5 CASWeb of Science®Google Scholar B. I. Yakobson, C. J. Brabec, J. Bernholc, Phys. Rev. Lett. 1996, 76, 2411. 10.1103/PhysRevLett.76.2511 CASWeb of Science®Google Scholar M. B. Nardelli, B. I. Yakobson, J. Bernholc, Phys. Rev. B 1998, 57, 4277. 10.1103/PhysRevB.57.R4277 Web of Science®Google Scholar C. F. Cornwell, L. T. Wille, Solid State Commun. 1997, 101, 555. 10.1016/S0038-1098(96)00742-9 CASWeb of Science®Google Scholar J. P. Lu, Phys. Rev. Lett. 1997, 79, 1297. 10.1103/PhysRevLett.79.1297 CASWeb of Science®Google Scholar E. Hernández, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 1998, 80, 4502. 10.1103/PhysRevLett.80.4502 CASWeb of Science®Google Scholar L. Vaccarini, C. Goze, L. Henrard, E. Hernández, P. Bernier, A. Rubio, unpublished. Google Scholar 3 P. Calvert, Nature 1999, 399 210. 10.1038/20326 CASWeb of Science®Google Scholar 4 H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett. 1998, 72, 188. 10.1063/1.120680 CASWeb of Science®Google Scholar 5 O. Lourie, H. D. Wagner, J. Mater. Res. 1998, 13, 2418. 10.1557/JMR.1998.0336 CASWeb of Science®Google Scholar 6 J. R. Wood, M. D. Frogly, E. R. Meurs, A. D. Prins, T. Peijs, D. J. Dunstan, H. D. Wagner, unpublished. Google Scholar 7 L. S. Schadler, S. C. Giannaris, P. M. Ajayan, Appl. Phys. Lett. 1998, 73, 26. 10.1063/1.122911 Web of Science®Google Scholar 8 M.-F. Yu, O. Lourie, M. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287 637. 10.1126/science.287.5453.637 CASPubMedWeb of Science®Google Scholar 9 P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994, 265 1212. 10.1126/science.265.5176.1212 CASPubMedWeb of Science®Google Scholar L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 1998, 73, 1197. 10.1063/1.122125 CASWeb of Science®Google Scholar 10 B. L. Smith, T. E. Schaffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse, P. K. Hansma, Nature 1999, 399 761. 10.1038/21607 CASWeb of Science®Google Scholar 11 The shear modulus of an isolated SWNT is much larger and can be related to the elastic constants of graphite as 0.5 (C11-C12) = 440 GPa. This is not the magnitude relevant for the present experimental studies. In the case of the nanotube rope, its shear modulus is related to that of graphite by the ratio of the distance between tube—tube layers divided by the graphitic interplanar distance. This comes out as approximately, Grope ˜ 5 Ggraphite (see [12] for details of this relationship), suggesting that for a nanotube rope (assuming disorder) the lower limit for G will be ˜1 GPa. Google Scholar 12 J. P. Salvetat, G. A. D. Briggs, J. M. Bonard. R. W. Bacsa, A. J. Kulik, T. Steckli, N. A. Burnham, L. Forro, Phys. Rev. Lett. 1999, 82, 944. 10.1103/PhysRevLett.82.944 CASWeb of Science®Google Scholar 13 The governing equation in the Kelly-Tyson model modified for hollow tubes is: (1) where τNT is the interfacial shear stress, σNT is the failure stress of the fiber (or nanotube or nanotube bundle), dNT and DNT are the inner and outer diameters of the SWNT, respectively, and Lc is the critical length of the nanotubes. This was used to calculate the normal stresses in the tubes for a critical aspect ratio of 1000, a wall thickness of 0.34 nm, and shear stresses as described in the text. Google Scholar 14 J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science 1998, 280 1253. 10.1126/science.280.5367.1253 CASPubMedWeb of Science®Google Scholar Citing Literature Volume12, Issue10May, 2000Pages 750-753 ReferencesRelatedInformation