AP
A. Puglisi
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
3
h-index:
25
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

JWST and ALMA Discern the Assembly of Structural and Obscured Components in a High-redshift Starburst Galaxy

Zhaoxuan Liu et al.Jun 1, 2024
Abstract We present observations and analysis of the starburst PACS-819 at z = 1.45 ( M * = 10 10.7 M ⊙ ), using high-resolution (0.″1; 0.8 kpc) Atacama Large Millimeter/submillimeter Array (ALMA) and multiwavelength JWST images from the COSMOS-Web program. Dissimilar to Hubble Space Telescope (HST) ACS images in the rest-frame UV, the redder NIRCam and MIRI images reveal a smooth central mass concentration and spiral-like features, atypical for such an intense starburst. Through dynamical modeling of the CO ( J = 5–4) emission with ALMA, PACS-819 is rotation dominated and thus consistent with having a disk-like nature. However, kinematic anomalies in CO and asymmetric features in the bluer JWST bands (e.g., F150W) support a more disturbed nature likely due to interactions. The JWST imaging further enables us to map the distribution of stellar mass and dust attenuation, thus clarifying the relationships between different structural components not discernible in the previous HST images. The CO ( J = 5–4) and far-infrared dust continuum emission are cospatial with a heavily obscured starbursting core (<1 kpc) that is partially surrounded by much less obscured star-forming structures including a prominent arc, possibly a tidally distorted dwarf galaxy, and a massive clump (detected in CO), likely a recently accreted low-mass satellite. With spatially resolved maps, we find a high molecular gas fraction in the central area reaching ∼3 ( M gas / M * ) and short depletion times ( M gas /SFR ∼ 120 Myr, where SFR is star formation rate) across the entire system. These observations provide insights into the complex nature of starbursts in the distant Universe and underscore the wealth of complementary information from high-resolution observations with both ALMA and JWST.
0

Unveiling the (in)consistencies among the galaxy stellar mass function, star formation histories, satellite abundances and intracluster light from a semi-empirical perspective

Hao Fu et al.Jun 14, 2024
ABSTRACT In a hierarchical, dark matter-dominated Universe, stellar mass functions (SMFs), galaxy merger rates, star formation histories (SFHs), satellite abundances, and intracluster light (ICL), should all be intimately connected observables. However, the systematics affecting observations still prevent universal and uniform measurements of, for example, the SMF and the SFHs, inevitably preventing theoretical models to compare with multiple data sets robustly and simultaneously. We here present our holistic semi-empirical model decode (Discrete statistical sEmi-empiriCal mODEl) that converts via abundance matching dark matter merger trees into galaxy assembly histories, using different SMFs in input and predicting all other observables in output in a fully data-driven and self-consistent fashion with minimal assumptions. We find that: (1) weakly evolving or nearly constant SMFs below the knee ($M_\star \lesssim 10^{11} \, \mathrm{M}_\odot$) are the best suited to generate SFHs aligned with those inferred from MaNGA, SDSS, GAMA, and, more recently, JWST; (2) the evolution of satellites after infall only affects the satellite abundances and SFHs of massive central galaxies but not their merger histories; (3) the resulting SFR–$M_\star$ relation is lower in normalization by a factor of $\sim 2$ with respect to observations, with a flattening at high masses more pronounced in the presence of mergers; (4) the latest data on ICL can be reproduced if mass-loss from mergers is included in the models. Our findings are pivotal in acting as pathfinder to test the self-consistency of the high-quality data from, e.g. JWST and Euclid.
0

A Big Red Dot: Scattered light, host galaxy signatures and multi-phase gas flows in a luminous, heavily reddened quasar at cosmic noon

Matthew Stepney et al.Aug 14, 2024
Abstract We present a deep X-Shooter rest-frame UV to optical spectral analysis of the heavily reddened quasar, ULASJ2315+0143 at z = 2.566, known to reside in a major-merger host galaxy. The rest-frame optical is best-fit by a dust-reddened quasar (E(B-V)QSO = 1.55) with black-hole mass $\rm log_{10}(H\beta , M\small {BH} [{\rm M}_{\odot }]) = 10.26 \pm 0.05$, bolometric luminosity $\rm L_{Bol}$ = $\rm 10^{48.16}\, erg\,\,s^{-1}$ and Eddington-scaled accretion rate log$_{10}(\rm \lambda _{Edd}) = -0.19$. We find remarkable similarities between ULASJ2315+0143 and the high-redshift Little Red Dots (LRDs). The rest-frame UV cannot be explained by a dusty quasar component alone and requires an additional blue component consistent with either a star-forming host galaxy or scattered AGN light. We detect broad high-ionisation emission lines in the rest-UV, supporting the scattered light interpretation for the UV excess. The scattering fraction represents just 0.05% of the total luminosity of ULASJ2315+0143 . Analysis of the mid infra-red SED suggests an absence of hot dust on torus-scales similar to what is observed for LRDs. The obscuring medium is therefore likely on galaxy scales. We detect narrow, blueshifted associated absorption line systems in 1 iv, 1 v, 1 iv and 1 iii. There is evidence for significant high-velocity (&gt;1000 $\rm km\, s^{-1}$) outflows in both the broad and narrow line regions as traced by 1 iv and [1 iii] emission. The kinetic power of the [1 iii] wind is $\dot{\epsilon }_{k}^{ion} = 10^{44.61} \rm erg\, s^{-1} \sim 0.001\, L_{Bol}$. ULASJ2315+0143 is likely in an important transition phase where star formation, black-hole accretion and multi-phase gas flows are simultaneously occurring.
0

The properties of the interstellar medium in dusty, star-forming galaxies at z ∼ 2–4: The shape of the CO spectral line energy distributions

Dominic Taylor et al.Nov 26, 2024
Abstract The molecular gas in the interstellar medium (ISM) of star-forming galaxy populations exhibits diverse physical properties. We investigate the 12CO excitation of twelve dusty, luminous star-forming galaxies at z ∼ 2–4 by combining observations of the 12CO from Jup = 1 to Jup = 8. The spectral line energy distribution (SLED) has a similar shape to NGC 253, M82, and local ULIRGs, with much stronger excitation than the Milky Way inner disc. By combining with resolved dust continuum sizes from high-resolution 870-$\mu$m ALMA observations and dust mass measurements determined from multi-wavelength SED fitting, we measure the relationship between the 12CO SLED and probable physical drivers of excitation: star-formation efficiency, the average intensity of the radiation field 〈U〉, and the star-formation rate surface density. The primary driver of high-Jup 12CO excitation in star-forming galaxies is star-formation rate surface density. We use the ratio of the CO(3–2) and CO(6–5) line fluxes to infer the CO excitation in each source and find that the average ratios for our sample are elevated compared to observations of low-redshift, less actively star-forming galaxies and agree well with predictions from numerical models that relate the ISM excitation to the star-formation rate surface density. The significant scatter in the line ratios of a factor ≈3 within our sample likely reflects intrinsic variations in the ISM properties which may be caused by other effects on the excitation of the molecular gas, such as cosmic ray ionization rates and mechanical heating through turbulence dissipation.