RM
R. Mewaldt
Author with expertise in Solar Physics and Space Weather
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
982
h-index:
66
/
i10-index:
240
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS

A. Emslie et al.Oct 17, 2012
We have evaluated the energetics of 38 solar eruptive events observed by a variety of spacecraft instruments between 2002 February and 2006 December, as accurately as the observations allow. The measured energetic components include: (1) the radiated energy in the Geostationary Operational Environmental Satellite 1–8 Å band, (2) the total energy radiated from the soft X-ray (SXR) emitting plasma, (3) the peak energy in the SXR-emitting plasma, (4) the bolometric radiated energy over the full duration of the event, (5) the energy in flare-accelerated electrons above 20 keV and in flare-accelerated ions above 1 MeV, (6) the kinetic and potential energies of the coronal mass ejection (CME), (7) the energy in solar energetic particles (SEPs) observed in interplanetary space, and (8) the amount of free (non-potential) magnetic energy estimated to be available in the pertinent active region. Major conclusions include: (1) the energy radiated by the SXR-emitting plasma exceeds, by about half an order of magnitude, the peak energy content of the thermal plasma that produces this radiation; (2) the energy content in flare-accelerated electrons and ions is sufficient to supply the bolometric energy radiated across all wavelengths throughout the event; (3) the energy contents of flare-accelerated electrons and ions are comparable; (4) the energy in SEPs is typically a few percent of the CME kinetic energy (measured in the rest frame of the solar wind); and (5) the available magnetic energy is sufficient to power the CME, the flare-accelerated particles, and the hot thermal plasma.
0
Citation383
0
Save
0

Shock Geometry, Seed Populations, and the Origin of Variable Elemental Composition at High Energies in Large Gradual Solar Particle Events

A. Tylka et al.May 13, 2005
Above a few tens of MeV per nucleon, large, gradual solar energetic particle (SEP) events are highly variable in their spectral characteristics and elemental composition. The origin of this variability has been a matter of intense and ongoing debate. In this paper, we propose that this variability arises from the interplay of two factors—shock geometry and a compound seed population, typically comprising both solar-wind and flare suprathermals. Whereas quasi-parallel shocks generally draw their seeds from solar-wind suprathermals, quasi-perpendicular shocks—by requiring a higher initial speed for effective injection—preferentially accelerate seed particles from flares. Solar-wind and flare seed particles have distinctive compositional characteristics, which are then reflected in the accelerated particles. We first examine our hypothesis in the context of particles locally accelerated near 1 AU by traveling interplanetary shocks. We illustrate the implications of our hypothesis for SEPs with two very large events, 2002 April 21 and 2002 August 24. These two events arise from very similar solar progenitors but nevertheless epitomize extremes in high-energy SEP variability. We then test our hypothesis with correlation studies based on observations of 43 large SEP events in 1997-2003 by the Advanced Composition Explorer, Wind, the Interplanetary Monitoring Platform 8, and GOES. We consider correlations among high-energy Fe/O, event size, spectral characteristics, the presence of GeV protons, and event duration at high energies. The observed correlations are all qualitatively consistent with our hypothesis. Although these correlation studies cannot be construed as proof of our hypothesis, they certainly confirm its viability. We also examine the alternative hypothesis in which a direct flare component—rather than flare particles subsequently processed through a shock—dominates at high energies. This alternative would produce compositional characteristics similar to those of our hypothesis. However, the observed longitude distribution of the enhanced Fe/O events, their spectral characteristics, and recent timing studies all pose serious challenges for a direct flare component. We also comment on measurements of the mean ionic charge state of Fe at high energies. We conclude that shock geometry and seed population potentially provide a framework for understanding the overall high-energy variability in large SEP events. We suggest additional studies for testing this hypothesis.
0

IS⊙IS Solar γ-Ray Measurements: Initial Observations and Calibrations

J. Mitchell et al.Jun 1, 2024
Abstract High-energy neutral solar radiation in the form of γ -rays and neutrons is produced as secondary products in solar flares. The characteristics of this emission can provide key information regarding the energization of charged particles, particularly when primary particles remain trapped in the corona. The Integrated Science Investigation of the Sun (IS⊙IS) suite on Parker Solar Probe is composed of instruments primarily intended to measure energetic charged particles. However, the High Energy Telescope (HET) in IS⊙IS was also designed with a supplementary neutral mode intended to measure γ -rays and neutrons. HET observed its first clear solar γ -ray event in connection with a hard X-ray flare, the eruption of a coronal mass ejection, and a solar energetic particle event on 2022 September 5. The X-ray spectral shape was observed to harden over the course of the event, culminating with the observation of γ -rays by HET. A coincident enhancement in the lower-energy Energetic Particle Instrument (EPI-Lo) was also observed, likely produced by incident solar γ -rays despite the EPI-Lo instrument not having any special neutral measurement capabilities. We use Monte Carlo modeling to reconstruct the incident γ -ray spectrum based on the measured spectrum to demonstrate that the combination of IS⊙IS instruments can measure hard X-rays and γ -rays from ∼60 keV–7 MeV. Despite the fact that this is a supplemental science goal of the mission, the capability of the IS⊙IS instruments to measure γ -rays is important for the study of this population due to the very limited instruments currently observing the Sun in γ -rays.
0
Paper
Citation1
0
Save