The Loess Plateau, with a fragile ecological environment, is one of the most serious water- and soil-eroded regions in the world, which has been improved by large-scale projects involving returning farmland to forest and grassland. This work is mainly aimed at exploring a more reasonable and efficient ecological forest restoration mode and revealing synergistic restoration mechanisms. This study sampled typical Loess Plateau areas and designed the restoration modes for pure forests of Armeniaca sibirica L. (AR), Amygdalus davidiana (Carrière) de Vos ex Henry. (AM), Medicago sativa L. (MS), and mixed forests of apricot–peach–alfalfa (AR&AM&MS), using abandoned land (AL) as a control treatment. The effects of these modes on the physical and chemical properties and enzyme activities of various soils were investigated in detail. Moreover, the soil microbial diversity and community structure, functional gene diversity, and differences in the restoration modes were deeply analyzed by meta-genomic sequencing technology, and the inherent driving correlation and mechanisms among these indicators were discussed. The results showed that the soil water content and porosity of the AR, AM, and AR&AM&MS treatments increased significantly, while the bulk density decreased significantly, compared with AL. Moreover, the total carbon, total nitrogen, nitrate nitrogen, total phosphorus, available phosphorus, total potassium, and available potassium contents of the AR&AM&MS restoration mode increased significantly. Compared to CK, there was no significant change in the catalase content of pure forest and mixed forest; however, the contents of urease, phosphatase, sucrase, B-glycanase, and N-acetylglucosaminidase in the restoration mode of the mixed forest all increased significantly. The species diversity index of the restoration modes is similar, and the dominant bacteria in soil microorganisms include Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. The mixed forest restoration mode had the highest microbial abundance. The functional gene diversity of the different restoration modes was also similar, including kegg genes, eggNOG genes, and carbohydrate enzymes. The functional genes of the mixed forest restoration mode were the most abundant, and their restoration mechanism was related to the coupling effect of soil–forest grass. After evaluation, the restoration mode of mixed forest was superior to that of pure forest or pure grass. This is attributed to the fact that the mode can improve soil structure, retain soil moisture, enhance soil enzyme activity, optimize soil microbial community structure, and improve microbial diversity and functional gene activity. This provides key data for the restoration of fragile ecological areas, and the promotion of sustainable management of forests and grass in hilly areas of the Loess Plateau.