ML
Mu Li
Author with expertise in Single Image Super-Resolution Techniques
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
1,091
h-index:
31
/
i10-index:
68
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Learning Convolutional Networks for Content-Weighted Image Compression

Mu Li et al.Jun 1, 2018
Lossy image compression is generally formulated as a joint rate-distortion optimization problem to learn encoder, quantizer, and decoder. Due to the non-differentiable quantizer and discrete entropy estimation, it is very challenging to develop a convolutional network (CNN)-based image compression system. In this paper, motivated by that the local information content is spatially variant in an image, we suggest that: (i) the bit rate of the different parts of the image is adapted to local content, and (ii) the content-aware bit rate is allocated under the guidance of a content-weighted importance map. The sum of the importance map can thus serve as a continuous alternative of discrete entropy estimation to control compression rate. The binarizer is adopted to quantize the output of encoder and a proxy function is introduced for approximating binary operation in backward propagation to make it differentiable. The encoder, decoder, binarizer and importance map can be jointly optimized in an end-to-end manner. And a convolutional entropy encoder is further presented for lossless compression of importance map and binary codes. In low bit rate image compression, experiments show that our system significantly outperforms JPEG and JPEG 2000 by structural similarity (SSIM) index, and can produce the much better visual result with sharp edges, rich textures, and fewer artifacts.
0

Deep dual incomplete multi-view multi-label classification via label semantic-guided contrastive learning

Jinrong Cui et al.Aug 1, 2024
Multi-view multi-label learning (MVML) aims to train a model that can explore the multi-view information of the input sample to obtain its accurate predictions of multiple labels. Unfortunately, a majority of existing MVML methods are based on the assumption of data completeness, making them useless in practical applications with partially missing views or some uncertain labels. Recently, many approaches have been proposed for incomplete data, but few of them can handle the case of both missing views and labels. Moreover, these few existing works commonly ignore potentially valuable information about unknown labels or do not sufficiently explore latent label information. Therefore, in this paper, we propose a label semantic-guided contrastive learning method named LSGC for the dual incomplete multi-view multi-label classification problem. Concretely, LSGC employs deep neural networks to extract high-level features of samples. Inspired by the observation of exploiting label correlations to improve the feature discriminability, we introduce a graph convolutional network to effectively capture label semantics. Furthermore, we introduce a new sample-label contrastive loss to explore the label semantic information and enhance the feature representation learning. For missing labels, we adopt a pseudo-label filling strategy and develop a weighting mechanism to explore the confidently recovered label information. We validate the framework on five standard datasets and the experimental results show that our method achieves superior performance in comparison with the state-of-the-art methods.