ME
Mohamed Eltaher
Author with expertise in Modeling and Analysis of Functionally Graded Plates
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(33% Open Access)
Cited by:
1,278
h-index:
38
/
i10-index:
131
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Thermally Induced Vibration of a Flexible Plate with Enhanced Active Constrained Layer Damping

Y. Guo et al.Jun 23, 2024
When spacecraft execute missions in space, their solar panels—crucial components—often need to be folded, unfolded, and adjusted at an angle. These operations can induce numerous detrimental nonlinear vibrations. This paper addresses the issues of nonlinear and thermal-coupled vibration control within the context of space-based flexible solar panel systems. Utilizing piezoelectric smart hybrid vibration control technology, this study focuses on a flexible plate augmented with an active constrained layer damping. The solar panel, under thermal field conditions, is modeled and simulated using the commercial finite element simulation software ABAQUS. The research examines variations in the modal frequencies and damping properties of the model in response to changes in the coverage location of the piezoelectric patches, their coverage rate, rotational angular velocity, and the thickness of the damping layer. Simulation results indicate that structural damping is more effective when the patches are closer to the rotation axis, the coverage area of the patches is larger, the rotational speed is lower, and the damping layer is thicker. Additionally, the effectiveness of vibration suppression is influenced by the interplay between the material shear modulus, loss factor, and specific working temperature ranges. The selection of appropriate parameters can significantly alter the system’s vibrational characteristics. This work provides necessary technical references for the analysis of thermally induced vibrations in flexible solar sails under complex space conditions.
0

Snap-through of functionally graded graphene origami-enabled auxetic metamaterial doubly curved nonlinear shells

Mohamed Eltaher et al.Dec 8, 2024
The lightweight design of thin-walled curved structures as spherical shells are frequently implemented in architecture, aerospace, mechanical, automotive, nuclear, and defense structures. Under the transverse loads, shells may largely deform and hence snap from one equilibrium position to the other. Thus, this work aims to develop a mathematical model and computational solution to investigate the nonlinear bending and snap-through behavior of doubly curved auxetic metamaterial shell subjected to transversal loading, for the first time. The shell is composed of several layers through the shell thickness, each layer is manufactured from a copper (Cu) matrix reinforced with a specified weight fraction of graphene origami auxetic metamaterial (GOAM). The mechanical properties of the GOAM shell panel are presented and described by functions of the GOAM volume fraction and folding degree. Three types of GOAM-distributions are considered, which are U-type, X-type, and O-type. The theoretical framework of Kirchhoff–Love hypotheses for thin shells and von Karman type nonlinearity are used to derive the governing equations. The differential quadrature method (DQM) is implemented to discretize the space domain and convert the nonlinear partial differential equation to nonlinear algebraic equations in terms of displacement field. An efficient incremental iterative procedure is developed to solve the nonlinear equations and predict the snap-through behavior. A model conversion and validation with isotropic spherical shell is considered. Several numerical results are conducted considering the effects of changing GOAM content, distribution pattern, folding degree, and shell curvature and thickness. For panels exhibiting snap-through behavior, increasing the shell curvature leads to higher snap-through limiting load; however, the instability gap is enlarged.
Load More