We designed and built up a new type of ambient scanning probe microscope (SPM), which is fully compatible with state-of-the-art quantum sensing technology based on the nitrogen-vacancy (NV) centers in diamond. We chose a qPlus-type tuning fork (Q up to ∼4400) as the current/force sensor of SPM for its high stiffness and stability under various environments, which yields atomic resolution under scanning tunneling microscopy mode and 1.2-nm resolution under atomic force microscopy mode. The tip of SPM can be used to directly image the topography of nanoscale targets on diamond surfaces for quantum sensing and to manipulate the electrostatic environment of NV centers to enhance their sensitivity up to a single proton spin. In addition, we also demonstrated scanning magnetometry and electrometry with a spatial resolution of ∼20 nm. Our new system not only paves the way for integrating atomic/molecular-scale color-center qubits onto SPM tips to produce quantum tips but also provides the possibility of fabricating color-center qubits with nanoscale or atomic precision.