CS
Claudio Silva
Author with expertise in Analysis of Three-Dimensional Shape Structures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(50% Open Access)
Cited by:
2,749
h-index:
50
/
i10-index:
166
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips

Nivan Ferreira et al.Oct 16, 2013
As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them.
0

VisTrails

Steven Callahan et al.Jun 27, 2006
Scientists are now faced with an incredible volume of data to analyze. To successfully analyze and validate various hypothesis, it is necessary to pose several queries, correlate disparate data, and create insightful visualizations of both the simulated processes and observed phenomena. Often, insight comes from comparing the results of multiple visualizations. Unfortunately, today this process is far from interactive and contains many error-prone and time-consuming tasks. As a result, the generation and maintenance of visualizations is a major bottleneck in the scientific process, hindering both the ability to mine scientific data and the actual use of the data. The VisTrails system represents our initial attempt to improve the scientific discovery process and reduce the time to insight. In VisTrails, we address the problem of visualization from a data management perspective: VisTrails manages the data and metadata of a visualization product. In this demonstration, we show the power and flexibility of our system by presenting actual scenarios in which scientific visualization is used and showing how our system improves usability, enables reproducibility, and greatly reduces the time required to create scientific visualizations.
0

The State of the Art in Visual Analytics for 3D Urban Data

Fábio Miranda et al.Jun 1, 2024
Abstract Urbanization has amplified the importance of three‐dimensional structures in urban environments for a wide range of phenomena that are of significant interest to diverse stakeholders. With the growing availability of 3D urban data, numerous studies have focused on developing visual analysis techniques tailored to the unique characteristics of urban environments. However, incorporating the third dimension into visual analytics introduces additional challenges in designing effective visual tools to tackle urban data's diverse complexities. In this paper, we present a survey on visual analytics of 3D urban data. Our work characterizes published works along three main dimensions ( why, what , and how ), considering use cases, analysis tasks, data, visualizations, and interactions. We provide a fine‐grained categorization of published works from visualization journals and conferences, as well as from a myriad of urban domains, including urban planning, architecture, and engineering. By incorporating perspectives from both urban and visualization experts, we identify literature gaps, motivate visualization researchers to understand challenges and opportunities, and indicate future research directions.
0

Mocap: Large-scale inference of transcription factor binding sites from chromatin accessibility

Xi Chen et al.Oct 27, 2016
Differential binding of transcription factors (TFs) at cis-regulatory loci drives the differentiation and function of diverse cellular lineages. Understanding the regulatory interactions that underlie cell fate decisions requires characterizing TF binding sites (TFBS) across multiple cell types and conditions. Techniques, e.g. ChIP-Seq can reveal genome-wide patterns of TF binding, but typically requires laborious and costly experiments for each TF-cell-type (TFCT) condition of interest. Chromosomal accessibility assays can connect accessible chromatin in one cell type to many TFs through sequence motif mapping. Such methods, however, rarely take into account that the genomic context preferred by each factor differs from TF to TF, and from cell type to cell type. To address the differences in TF behaviors, we developed Mocap, a method that integrates chromatin accessibility, motif scores, TF footprints, CpG/GC content, evolutionary conservation and other factors in an ensemble of TFCT-specific classifiers. We show that integration of genomic features, such as CpG islands improves TFBS prediction in some TFCT. Further, we describe a method for mapping new TFCT, for which no ChIP-seq data exists, onto our ensemble of classifiers and show that our cross-sample TFBS prediction method outperforms several previously described methods.
0

MOUNTAINEER: Topology-Driven Visual Analytics for Comparing Local Explanations

Parikshit Solunke et al.Jan 1, 2024
With the increasing use of black-box Machine Learning (ML) techniques in critical applications, there is a growing demand for methods that can provide transparency and accountability for model predictions. As a result, a large number of local explainability methods for black-box models have been developed and popularized. However, machine learning explanations are still hard to evaluate and compare due to the high dimensionality, heterogeneous representations, varying scales, and stochastic nature of some of these methods. Topological Data Analysis (TDA) can be an effective method in this domain since it can be used to transform attributions into uniform graph representations, providing a common ground for comparison across different explanation methods. We present a novel topology-driven visual analytics tool, Mountaineer, that allows ML practitioners to interactively analyze and compare these representations by linking the topological graphs back to the original data distribution, model predictions, and feature attributions. Mountaineer facilitates rapid and iterative exploration of ML explanations, enabling experts to gain deeper insights into the explanation techniques, understand the underlying data distributions, and thus reach well-founded conclusions about model behavior. Furthermore, we demonstrate the utility of Mountaineer through two case studies using real-world data. In the first, we show how Mountaineer enabled us to compare black-box ML explanations and discern regions of and causes of disagreements between different explanations. In the second, we demonstrate how the tool can be used to compare and understand ML models themselves. Finally, we conducted interviews with three industry experts to help us evaluate our work.
0

Prediction of Stock Prices Using Ensemble Models

Claudio Silva et al.Sep 4, 2024
The financial market encompasses a set of institutions, products, and services aimed at meeting the financial needs of individuals, companies, and governments. Its primary objective is to direct financial resources from investors to projects requiring funding. This is achieved through the issuance and trading of securities such as stocks, debt securities, among others. In this paper, the goal was to develop a machine learning application specifically for the Brazilian financial market, focusing on predicting the market value of eight companies that are representative of the financial sector on the stock exchange. The prediction is based on the closing price history and uses data from the last three years, with the inputs corresponding to the last 60 days immediately preceding the forecast date. For this task, three machine learning models were selected: Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), and Convolutional Neural Network (CNN). Each of these was fine-tuned using five different optimizers, resulting in a total of 15 models. Subsequently, all 15 models were combined into an Ensemble. After applying data transformations, the models achieved a satisfactory level of error for the analysis. Among the transformations used, the logarithmic transformation stood out as the one that resulted in the most well-adjusted models compared to the others. In second place, the Yeo-Johnson transformation showed slightly higher error but performed better on series with high variation. Additionally, the convolutional models and Ensemble were the most effective.