RY
Ran Yan
Author with expertise in Hepatitis B Infection and Treatment
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
228
h-index:
23
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inhibition of Hepatitis B Virus Replication by the Host Zinc Finger Antiviral Protein

Richeng Mao et al.Jul 11, 2013
The zinc finger antiviral protein (ZAP) is a mammalian host restriction factor that inhibits the replication of a variety of RNA viruses, including retroviruses, alphaviruses and filoviruses, through interaction with the ZAP-responsive elements (ZRE) in viral RNA, and recruiting the exosome to degrade RNA substrate. Hepatitis B virus (HBV) is a pararetrovirus that replicates its genomic DNA via reverse transcription of a viral pregenomic (pg) RNA precursor. Here, we demonstrate that the two isoforms of human ZAP (hZAP-L and -S) inhibit HBV replication in human hepatocyte-derived cells through posttranscriptional down-regulation of viral pgRNA. Mechanistically, the zinc finger motif-containing N-terminus of hZAP is responsible for the reduction of HBV RNA, and the integrity of the four zinc finger motifs is essential for ZAP to bind to HBV RNA and fulfill its antiviral function. The ZRE sequences conferring the susceptibility of viral RNA to ZAP-mediated RNA decay were mapped to the terminal redundant region (nt 1820–1918) of HBV pgRNA. In agreement with its role as a host restriction factor and as an innate immune mediator for HBV infection, ZAP was upregulated in cultured primary human hepatocytes and hepatocyte-derived cells upon IFN-α treatment or IPS-1 activation, and in the livers of hepatitis B patients during immune active phase. Knock down of ZAP expression increased the level of HBV RNA and partially attenuated the antiviral effect elicited by IPS-1 in cell cultures. In summary, we demonstrated that ZAP is an intrinsic host antiviral factor with activity against HBV through down-regulation of viral RNA, and that ZAP plays a role in the innate control of HBV replication. Our findings thus shed light on virus-host interaction, viral pathogenesis, and antiviral approaches.
0
Citation225
0
Save
0

Long Non-coding RNA DANCR Regulates the Proliferation and Migration of Human Adipose-derived Mesenchymal Stromal Cells in Inflammation Conditions

Ran Yan et al.Jun 3, 2024
Background: Mesenchymal stromal cells (MSCs) and Dexamethasone (Dex) are both effective methods to treat inflammatory diseases. However, the interaction between inflammatory factors, Dex, and MSCs in repair is not fully understood. The purpose of this study is to clarify the effects and mechanisms of glucocorticoids on the tissue repair characteristics of MSCs in an inflammatory environment. Methods: This is an experimental study. Human adipose-derived mesenchymal stromal cells (hASCs) were cultured, and Long non-coding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) expression was detected after treatment with Dex and inflammation factors. Additionally, DANCR was knockdown or overexpressed before Dex or tumor necrosis factor-alpha (TNF-α) treatments, respectively. hASC proliferation, cell cycle, and migration ability were analyzed to evaluate the effects of DANCR in hASCs treated with Dex or TNF-α. Nuclear factor-kB (NF-κB) pathway inhibitors were used to clarify the signal pathway that DANCR involved. All data are presented as the mean ± standard deviation. The two-tailed Student's t-test or one-way analysis of variance (ANOVA) was used to determine the statistical differences between groups. Results: Dex decreased the proliferation and migration of hASCs and upregulated DANCR expression in a dosage-dependent relationship. The knockdown of DANCR reversed Dex's repression of hASC proliferation. Moreover, DANCR was decreased by inflammatory cytokines, and overexpressing DANCR alleviated the promotion effects of TNF-α on hASC proliferation and migration. Furthermore, mechanistic investigation validated that DANCR was involved in the NF- κB signaling pathway. Conclusions: We identified a lncRNA, DANCR, that was involved in Dex and inflammation-affected hASC proliferation and migration. Dex reduced the proliferation and migration of hASCs through DANCR while exerting its anti-inflammatory effects. Thus, it is suggested to avoid the simultaneous application of hASCs and steroids in clinical practice. These results enrich our understanding of the versatile function of lncRNAs in the crosstalk of inflammation conditions and MSCs.
0

Tripartite Motif-Containing Protein 65 (TRIM65) Inhibits Hepatitis B Virus Transcription

Sheng Shen et al.May 31, 2024
Tripartite motif (TRIM) proteins, comprising a family of over 100 members with conserved motifs, exhibit diverse biological functions. Several TRIM proteins influence viral infections through direct antiviral mechanisms or by regulating host antiviral innate immune responses. To identify TRIM proteins modulating hepatitis B virus (HBV) replication, we assessed 45 human TRIMs in HBV-transfected HepG2 cells. Our study revealed that ectopic expression of 12 TRIM proteins significantly reduced HBV RNA and subsequent capsid-associated DNA levels. Notably, TRIM65 uniquely downregulated viral pregenomic (pg) RNA in an HBV-promoter-specific manner, suggesting a targeted antiviral effect. Mechanistically, TRIM65 inhibited HBV replication primarily at the transcriptional level via its E3 ubiquitin ligase activity and intact B-box domain. Though HNF4α emerged as a potential TRIM65 substrate, disrupting its binding site on the HBV genome did not completely abolish TRIM65’s antiviral effect. In addition, neither HBx expression nor cellular MAVS signaling was essential to TRIM65-mediated regulation of HBV transcription. Furthermore, CRISPR-mediated knock-out of TRIM65 in the HepG2-NTCP cells boosted HBV infection, validating its endogenous role. These findings underscore TRIM proteins’ capacity to inhibit HBV transcription and highlight TRIM65’s pivotal role in this process.