TW
Tao Wang
Author with expertise in Synthesis and Properties of Cemented Carbides
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
1
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exploring radiation damage in (Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)C high-entropy carbide ceramic: Integrating experimental and atomistic investigations

Gaowei Zhang et al.Jun 12, 2024
This study investigates the intricate mechanisms that govern irradiation damage in high-entropy ceramic materials. Specifically, we synthesized (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy carbide ceramics (HECC) with a single-phase rock-salt structure using spark plasma sintering. These ceramics were then subjected to irradiation with 1.08 MeV C ions, resulting in a dose of 7.2 dpa (dpa: displacements per atom) at both room temperature (RT) and 500 °C. To understand the resulting damage structure, we analyzed bulk irradiated HECC samples using Grazing Incidence X-ray Diffraction (GIXRD) and Transmission Electron Microscope (TEM) at both irradiation temperatures. GIXRD analysis revealed an average tensile strain out-of-plane of 0.16% for RT irradiation and 0.14% for irradiation at 500 °C. In addition, TEM analysis identified a buried damaged band, approximately 970 nm thick, under both irradiation temperatures. By employing the bright field TEM imaging technique under kinematic two-beam conditions, dislocation loops of both a/3 〈111〉{111} and a/2 〈110〉{110} types within the damaged band were observed. Furthermore, our analysis indicated an increase in the average size of the total dislocation loops within the band from 1.2 nm to 1.4 nm as the density decreased. Importantly, no amorphization, precipitates, or voids were detected in the damaged band under both irradiation temperatures. Denstiy functional theory (DFT) simulations indicated that carbon predominantly resides in 〈110〉 split interstitial sites causing lattice expansion, while vacancies, particularly Nb, induced compression along the c-axis. Carbon atoms tend to bond when collectively present in the <110> split interstitial sites, contributing to the formation of interstitial loops.
0

Modulation of High‐Frequency rTMS on Reward Circuitry in Individuals with Nicotine Dependence: A Preliminary fMRI Study

Tao Wang et al.Jan 1, 2024
Although previous studies have shown that repetitive transcranial magnetic stimulation (rTMS) can ameliorate addictive behaviors and cravings, the underlying neural mechanisms remain unclear. This study aimed to investigate the effect of high‐frequency rTMS with the left dorsolateral prefrontal cortex (L‐DLPFC) as a target region on smoking addiction in nicotine‐dependent individuals by detecting the change of spontaneous brain activity in the reward circuitry. We recruited 17 nicotine‐dependence participants, who completed 10 sessions of 10 Hz rTMS over a 2‐week period and underwent evaluation of several dependence‐related scales, and resting‐state fMRI scan before and after the treatment. Functional connectivity (FC) analysis was conducted with reward‐related brain regions as seeds, including ventral tegmental area, bilateral nucleus accumbens (NAc), bilateral DLPFC, and bilateral amygdala. We found that, after the treatment, individuals showed reduced nicotine dependence, alleviated tobacco withdrawal symptoms, and diminished smoking cravings. The right NAc showed increased FC with right fusiform gyrus, inferior temporal gyrus (ITG), calcarine fissure and surrounding cortex, superior occipital gyrus (SOG), lingual gyrus, and bilateral cuneus. No significant FC changes were observed in other seed regions. Moreover, the changes in FC between the right NAc and the right ITG as well as SOG before and after rTMS were negatively correlated with changes in smoking scale scores. Our findings suggest that high‐frequency L‐DLPFC‐rTMS reduces nicotine dependence and improves tobacco withdrawal symptoms, and the dysfunctional connectivity in reward circuitry may be the underlying neural mechanism for nicotine addiction and its therapeutic target.