MM
Michael McCarthy
Author with expertise in Epidemiology and Management of Bipolar Disorder
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
497
h-index:
33
/
i10-index:
66
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder

Jérôme Mertens et al.Oct 28, 2015
+22
Y
Q
J
A neuronal model of bipolar disorder based on induced pluripotent stem cell (iPSC) technology finds hyperactive action-potential firing and differential responsiveness to lithium in iPSC-derived neurons from patients with bipolar disorder. Lithium is widely used as a mood stabilizer in bipolar disorder, but not all patients respond favourably. In this paper, Fred Gage and colleagues generated hippocampal dentate gyrus-like neurons from induced pluripotent stem cells (iPSCs) obtained from lithium-responsive and lithium-non-responsive patients with bipolar disorder in order to assess differences in cellular phenotypes. They found mitochondrial abnormalities and hyperexcitability in young iPSC-derived neurons from bipolar disorder patients. Hyperexcitability was reversed by lithium treatment only in neurons derived from lithium-responsive individuals. This suggests that hyperexcitability may be an early endophenotype of bipolar disorder and that iPSC models may be useful for the development of new therapies. Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide1. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity2. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models3, such as reduced glial cell number in the prefrontal cortex of patients4, upregulated activities of the protein kinase A and C pathways5,6,7 and changes in neurotransmission8,9,10,11. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca2+ imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.
0
Citation495
0
Save
0

Exploring the genetics of lithium response in bipolar disorders

Marisol Herrera-Rivero et al.Jun 12, 2024
+117
J
A
M
Abstract Background Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
0
Citation2
0
Save
0

High genetic loading for schizophrenia predicts poor response to lithium in patients with bipolar disorder: A polygenic score and cross-trait genetic analysis

Azmeraw Amare et al.Nov 11, 2017
+111
S
F
A
Lithium is a first-line mood stabilizer for the maintenance treatment of Bipolar Disorder (BPD). However, the efficacy of lithium varies widely, with a non-response rate of up to 30%. Biological response markers and predictors are lacking. Objective: Genetic factors are thought to mediate lithium treatment response, and the previously reported genetic overlap between BPD and schizophrenia (SCZ) led us to test whether a polygenic score (PGS) for SCZ could predict lithium treatment response in BPD. Further, we explored the potential molecular underpinnings of this association. Design: Weighted SCZ PGSs were computed at ten p-value thresholds (PT) using summary statistics from a genome-wide association study (GWAS) of 36,989 SCZ cases, and genotype data for BPD patients from the Consortium on Lithium Genetics (ConLi+Gen). For functional exploration, we performed a cross-trait meta-GWAS and pathway analysis, combining GWAS summary statistics on SCZ and lithium treatment response. Setting: International multicenter GWAS. Participants: Patients with BPD who had undergone lithium treatment were genotyped and retrospectively assessed for long-term treatment response (n=2,586). Main outcome measures: Clinical treatment response to lithium was defined on both the categorical and continuous scales using the ALDA score. The effect measures include odds ratios (ORs) and the proportion of variance explained (R2), and a significant association was determined at p<0.05. Results: The PGS for SCZ was inversely associated with lithium treatment response in the categorical outcome (p=8x10-5), at PT <5x10-2. Patients with BPD who had low polygenic load for SCZ responded better to lithium, with ORs for lithium response ranging from 3.46 [95%CI: 1.42-8.41 at 1st decile] to 2.03 [95%CI: 0.86-4.81 at the 9th decile], compared to the patients in the 10th decile of SCZ risk. In the cross-trait meta-GWAS, 15 genetic loci that may have overlapping effects on lithium treatment response and susceptibility to SCZ were identified. Functional pathway and network analysis of these loci point to the HLA complex and inflammatory cytokines (TNFα, IL-4, IFNγ) as molecular contributors to lithium treatment response in BPD. Conclusions and Relevance: The study provides, for the first-time, evidence for a negative association between high genetic loading for SCZ and poor response to lithium in patients with BPD. These results suggest the potential for translational research aimed at personalized prescribing of lithium.
0

Polygenic scores for major depressive disorder and depressive symptoms predict response to lithium in patients with bipolar disorder

Azmeraw Amare et al.Oct 22, 2018
+112
S
L
A
Background: Lithium is a first-line medication for bipolar disorder (BD), but only ~30% of patients respond optimally to the drug. Since genetic factors are known to mediate lithium treatment response, we hypothesized whether polygenic susceptibility to the spectrum of depression traits is associated with treatment outcomes in patients with BD. In addition, we explored the potential molecular underpinnings of this relationship. Methods: Weighted polygenic scores (PGSs) were computed for major depressive disorder (MDD) and depressive symptoms (DS) in BD patients from the Consortium on Lithium Genetics (ConLi+Gen; n=2,586) who received lithium treatment. Lithium treatment outcome was assessed using the ALDA scale. Summary statistics from genome-wide association studies (GWAS) in MDD (130,664 cases and 330,470 controls) and DS (n=161,460) were used for PGS weighting. Associations between PGSs of depression traits and lithium treatment response were assessed by binary logistic regression. We also performed a cross-trait meta-GWAS, followed by Ingenuity Pathway Analysis. Outcomes: BD patients with a low polygenic load for depressive traits were more likely to respond well to lithium, compared to patients with high polygenic load (MDD: OR =1.64 [95%CI: 1.26-2.15], lowest vs highest PGS quartiles; DS: OR=1.53 [95%CI: 1.18-2.00]). Associations were significant for type 1, but not type 2 BD. Cross-trait GWAS and functional characterization implicated voltage-gated potassium channels, insulin-related pathways, mitogen-activated protein-kinase (MAPK) signaling, and miRNA expression. Interpretation: Genetic loading to depression traits in BD patients lower their odds of responding optimally to lithium. Our findings support the emerging concept of a lithium-responsive biotype in BD. Funding: see attached details. Keywords: lithium treatment, Major depressive disorder, depressive symptoms, depressive traits, bipolar disorder, polygenic score, pharmacogenomics, Voltage-gated potassium channel, insulin, MAPK.
0

Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder

Liping Hou et al.Mar 22, 2016
+138
F
T
L
Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behavior. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ~2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, p = 5.87×10-9; odds ratio = 1.12) and markers within ERBB2 (rs2517959, p = 4.53×10-9; odds ratio = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS.
0

Prenatal stress alters transcription of NMDA-type glutamate receptors in the hippocampus

Tristram Buck et al.Jun 24, 2024
+2
M
E
T
Prenatal stress increases the risk of neurodevelopmental disorders. NMDA-type glutamate receptor (NMDAR) activity plays an important pathophysiological role in the cortico-hippocampal circuit in these disorders. We tested the hypothesis that transcription of NMDAR subunits is modified in the frontal cortex (FCx) and hippocampus after exposure to prenatal restraint stress (PRS) in mice. At 10 weeks of age, male PRS offspring (n = 20) and non-stressed controls (NS, n = 20) were treated with haloperidol (1 mg/kg), clozapine (5 mg/kg) or saline twice daily for 5 days, before measuring social approach (SOC). Saline-treated and haloperidol-treated PRS mice had reduced SOC relative to NS (P < 0.01), but clozapine-treated PRS mice had similar SOC to NS mice. These effects of PRS were associated with increased transcription of NMDAR subunits encoded by GRIN2A and GRIN2B genes in the hippocampus but not FCx. GRIN transcription in FCx correlated positively with SOC, but hippocampal GRIN transcription had negative correlation with SOC. The ratio of GRIN2A/GRIN2B transcription is known to increase during development but was lower in PRS mice. These results suggest that GRIN2A and GRIN2B transcript levels are modified in the hippocampus by PRS, leading to life-long deficits in social behavior. These data have some overlap with the molecular pathophysiology of schizophrenia. Similar to PRS in mice, schizophrenia, has been associated with social withdrawal, with increased GRIN2 expression in the hippocampus, and reduced GRIN2A/GRIN2B expression ratios in the hippocampus. These findings suggest that PRS in mice may have construct validity as a preclinical model for antipsychotic drug development.