GR
Gian‐Marco Rignanese
Author with expertise in Advancements in Density Functional Theory
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(79% Open Access)
Cited by:
11,149
h-index:
57
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table

Michiel Setten et al.Feb 6, 2018
First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb potential near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm-conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not designed primarily for high precision. In this paper, we present our PseudoDojo framework for developing and testing full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PseudoDojo is an open source project, building on the AbiPy package, for developing and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into a standard and a stringent accuracy table. In total around 70,000 calculations were performed to test the pseudopotentials. The process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. The PseudoDojo hence provides a set of pseudopotentials and general purpose tools for further testing and development, focusing on highly accurate calculations and their use in the development of ab initio packages. The pseudopotential files are available on the PseudoDojo web-interface pseudo-dojo.org under the name NC (ONCVPSP) v0.4 in the psp8, UPF2, and PSML 1.1 formats. The webinterface also provides the inputs, which are compatible with the 3.3.1 and higher versions of ONCVPSP. All tests have been performed with ABINIT 8.4.
0
Paper
Citation1,240
0
Save
0

Recent developments in the ABINIT software package

Xavier Gonze et al.Apr 22, 2016
ABINIT is a package whose main program allows one to find the total energy, charge density, electronic structure and many other properties of systems made of electrons and nuclei, (molecules and periodic solids) within Density Functional Theory (DFT), Many-Body Perturbation Theory (GW approximation and Bethe–Salpeter equation) and Dynamical Mean Field Theory (DMFT). ABINIT also allows to optimize the geometry according to the DFT forces and stresses, to perform molecular dynamics simulations using these forces, and to generate dynamical matrices, Born effective charges and dielectric tensors. The present paper aims to describe the new capabilities of ABINIT that have been developed since 2009. It covers both physical and technical developments inside the ABINIT code, as well as developments provided within the ABINIT package. The developments are described with relevant references, input variables, tests and tutorials. Program title: ABINIT Catalogue identifier: AEEU_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEU_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 4845789 No. of bytes in distributed program, including test data, etc.: 71340403 Distribution format: tar.gz Programming language: Fortran2003, PERL scripts, Python scripts. Classification: 7.3, 7.8. External routines: (all optional) BigDFT [2], ETSF_IO [3], libxc [4], NetCDF [5], MPI [6], Wannier90 [7], FFTW [8]. Catalogue identifier of previous version: AEEU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2582 Does the new version supersede the previous version?: Yes. The abinit-7.10.5 version is now the up to date stable version of ABINIT Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and vibrational life-times, and others. Solution method: Software application based on Density Functional Theory, Many-Body Perturbation Theory and Dynamical Mean Field Theory, pseudopotentials, with plane waves or wavelets as basis functions. Reasons for new version: Since 2009, the abinit-5.7.4 version of the code has considerably evolved and is not yet up to date. The abinit- 7.10.5 version contains new physical and technical features that allow electronic structure calculations impossible to carry out in the previous versions. Summary of revisions: new physical features: quantum effects for the nuclei treated by the Path-integral Molecular Dynamics; finding transition states using image dynamics (NEB or string methods); two component DFT for electron-positron annihilation; linear response in a Projector Augmented-Wave approach -PAW-, electron-phonon interactions and temperature dependence of the gap; Bethe Salpeter Equation -BSE-; Dynamical Mean Field Theory (DMFT). new technical features: development of a PAW approach for a wavelet basis; parallelisation of the code on more than 10,000 processors; new build system. new features in the ABINIT package: tests; test farm; new tutorials; new pseudopotentials and PAW atomic data tables; GUI and postprocessing tools like the AbiPy and APPA libraries. It is difficult to answer to the question as the use of ABINIT is very large. On one hand, ABINIT can run on 10,000 processors for hours to perform quantum molecular dynamics on large systems. On the other hand, tutorials for students can be performed on a laptop within a few minutes. References: http://www.gnu.org/copyleft/gpl.txt http://bigdft.org http://www.etsf.eu/fileformats http://www.tddft.org/programs/octopus/wiki/index.php/Libxc http://www.unidata.ucar.edu/software/netcdf https://en.wikipedia.org/wiki/Message_Passing_Interface http://www.wannier.org M. Frigo and S.G. Johnson, Proceedings of the IEEE, 93, 216–231 (2005).
0
Citation738
0
Save
0

The Abinitproject: Impact, environment and recent developments

Xavier Gonze et al.Nov 18, 2019
Abinit is a material- and nanostructure-oriented package that implements density-functional theory (DFT) and many-body perturbation theory (MBPT) to find, from first principles, numerous properties including total energy, electronic structure, vibrational and thermodynamic properties, different dielectric and non-linear optical properties, and related spectra. In the special issue to celebrate the 40th anniversary of CPC, published in 2009, a detailed account of Abinit was included [Gonze et al. (2009)], and has been amply cited. The present article comes as a follow-up to this 2009 publication. It includes an analysis of the impact that Abinit has had, through for example the bibliometric indicators of the 2009 publication. Links with several other computational materials science projects are described. This article also covers the new capabilities of Abinit that have been implemented during the last three years, complementing a recent update of the 2009 article published in 2016. Physical and technical developments inside the abinit application are covered, as well as developments provided with the Abinit package, such as the multibinit and a-tdep projects, and related Abinit organization developments such as AbiPy . The new developments are described with relevant references, input variables, tests, and tutorials. Program Title: Abinit Program Files doi: http://dx.doi.org/10.17632/csvdrr4d68.1 Licensing provisions: GPLv3 Programming language: Fortran2003, Python Journal reference of previous version: X .Gonze et al, Comput. Phys. Commun. 205 (2016) 106–131 Does the new version supersede the previous version?: Yes. The present 8.10.3 version is now the up-to-date stable version of abinit , and supercedes the 7.10.5 version. Reasons for the new version: New developments Summary of revisions: Many new capabilities of the main abinit application, related to density-functional theory, density-functional perturbation theory, GW, the Bethe-Salpeter equation, dynamical mean-field theory, etc. New applications in the package: multibinit (second-principles calculations)and tdep (temperature-dependent properties) Nature of problem: Computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and vibrational lifetimes, etc. For large-scale systems, second-principles calculations, building upon the first-principles results, are also possible. Solution method: Software application based on density-functional theory and many-body perturbation theory, pseudopotentials, with plane waves or wavelets as basis functions. Different real-time algorithms are implemented for second-principles calculations.
0

Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides

Daniel Bilc et al.Apr 3, 2008
Using a linear combination of atomic orbitals approach, we report a systematic comparison of various density functional theory (DFT) and hybrid exchange-correlation functionals for the prediction of the electronic and structural properties of prototypical ferroelectric oxides. It is found that none of the available functionals is able to provide, at the same time, accurate electronic and structural properties of the cubic and tetragonal phases of $\mathrm{Ba}\mathrm{Ti}{\mathrm{O}}_{3}$ and $\mathrm{Pb}\mathrm{Ti}{\mathrm{O}}_{3}$. Some, although not all, usual DFT functionals predict the structure with acceptable accuracy, but always underestimate the electronic band gaps. Conversely, common hybrid functionals yield an improved description of the band gaps, but overestimate the volume and atomic distortions associated with ferroelectricity, giving rise to an unacceptably large $c∕a$ ratio for the tetragonal phases of both compounds. This supertetragonality is found to be induced mainly by the exchange energy corresponding to the generalized gradient approximation (GGA) and, to a lesser extent, by the exact exchange term of the hybrid functional. We thus propose an alternative functional that mixes exact exchange with the recently proposed GGA of Wu and Cohen [Phys. Rev. B 73, 235116 (2006)] which, for solids, improves over the treatment of exchange of the most usual GGA's. The new functional renders an accurate description of both the structural and electronic properties of typical ferroelectric oxides.
0

ABINIT: Overview and focus on selected capabilities

Aldo Romero et al.Mar 24, 2020
abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe–Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the “temperature-dependent effective potential” approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.
Load More