JC
Jianrong Chen
Author with expertise in Synthesis and Applications of Carbon Quantum Dots
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
26
(8% Open Access)
Cited by:
4,839
h-index:
84
/
i10-index:
303
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Highly Luminescent N‐Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform

Zhaosheng Qian et al.Jan 21, 2014
The doping of carbon quantum dots with nitrogen provides a promising direction to improve fluorescence performance and broaden their applications in sensing systems. Herein we report a one-pot solvothermal synthesis of N-doped carbon quantum dots (NCQDs) and the synthesis of a series of NCQDs with different nitrogen contents. The as-prepared NCQDs were compared with carbon quantum dots (CQDs); the introduction of nitrogen atoms largely increased the quantum yield of NCQDs and highest emission efficiency is up to 36.3 %. The fluorescence enhancement may originate from more polyaromatic structures induced by incorporated nitrogen atoms and protonation of nitrogen atoms on dots. It was found that NCQDs can act as a multifunctional fluorescence sensing platform because they can be used to detect pH values, Ag(I), and Fe(III) in aqueous solution. The fluorescence intensity of NCQDs is inversely proportional to pH values across a broad range from 5.0 to 13.5, which indicates that NCQDs can be devised as an effective pH indicator. Selective detection of Ag(I) and Fe(III) was achieved based on their distinctive fluorescence influence because Ag(I) can significantly enhance the fluorescence whereas Fe(III) can greatly quench the fluorescence. The quantitative determination of Ag(I) can be accomplished with NCQDs by using the linear relationship between fluorescence intensity of NCQDs and concentration of Ag(I). The sensitive detection of H2O2 was developed by taking advantage of the distinct quenching ability of Fe(III) and Fe(II) toward the fluorescence of NCQDs. Cellular toxicity test showed NCQDs still retain low toxicity to cells despite the introduction of a great deal of nitrogen atoms. Moreover, bioimaging experiments demonstrated that NCQDs have stronger resistance to photobleaching than CQDs and more excellent fluorescence labeling performance.
0

Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants

Xiaolu Liu et al.Mar 10, 2020
Graphitic carbon nitride (g-C3N4), with a moderate band gap (∼2.7 eV), high chemical and thermal stability, has been the hotspot in environmental photocatalysis. However, its performance is still unsatisfactory because of insufficient absorption of visible light, poor surface area, low electronic conductivity and high recombination rate of photogenerated electron-hole pairs. The modification of g-C3N4 could overcome these problems to improve photocatalytic properties. Among various modification strategies, element doping is an efficient and simple strategy for adjusting electronic structure and accelerating photocatalytic performance. This review focused on the progress and trends of designing typical, cost-effective element-doped carbonized nitrogen and its degradation of environmental organic pollutants. The heterogeneous catalytic mechanisms of g-C3N4-based photocatalysts for organic pollutants degradation have been explicated in detail. The increased photocatalytic performance of g-C3N4 by doping various elements was discussed clearly. The surface properties, catalyst performance and pollution management of various elements-doped g-C3N4 were compared and subsequently analyzed some dilemmas and application strategies for g-C3N4 development in depth. This review can light up a new way and afforded valuable clues to design g-C3N4 doping elements to exploit more effective photocatalyts for real applications in environmental pollution management.
0
Paper
Citation422
0
Save
0

Si-Doped Carbon Quantum Dots: A Facile and General Preparation Strategy, Bioimaging Application, and Multifunctional Sensor

Zhaosheng Qian et al.Apr 8, 2014
Heteroatom doping of carbon quantum dots not only enables great improvement of fluorescence efficiency and tunability of fluorescence emission, but also provides active sites in carbon dots to broaden their application in sensor. Silicon as a biocompatible element offers a promising direction for doping of carbon quantum dots. Si-doped carbon quantum dots (SiCQDs) were synthesized through a facile and effective approach. The as-prepared Si-doped carbon quantum dots possess visible fluorescence with high quantum yield up to 19.2%, owing to fluorescence enhancement effect of introduced silicon atoms into carbon dots. The toxicity test on human Hela cells showed that SiCQDs have lower cellular toxicity than common CQDs, and bioimaging experiments clearly demonstrated their excellent biolabelling ability and outstanding performance in resistance to photobleaching. Strong fluorescence quenching effect of Fe(III) on SiCQDs can be used for its selective detection among general metal ions. Specific electron transfer between SiCQDs and hydrogen peroxide enables SiCQDs as a sensitive fluorescence sensing platform for hydrogen peroxide. The subsequent fluorescence recovery induced by removal of hydrogen peroxide from SiCQDs due to formation of the stable adducts between hydrogen peroxide and melamine was taken advantage of to construct effective sensor for melamine.
Load More