YJ
Yilin Jiang
Author with expertise in Thermoelectric Materials
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
3
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High Thermoelectric Performance in Rhombohedral GeSe-LiBiTe2

Jinfeng Dong et al.Jun 13, 2024
GeSe, an analogue of SnSe, shows promise in exhibiting exceptional thermoelectric performance in the Pnma phase. The constraints on its dopability, however, pose challenges in attaining optimal carrier concentrations and improving ZT values. This study demonstrates a crystal structure evolution strategy for achieving highly doped samples and promising ZTs in GeSe via LiBiTe2 alloying. A rhombohedral phase (R3m) can be stabilized in the GeSe-LiBiTe2 system, further evolving into a cubic (Fm3̅m) phase with a rising temperature. The band structures of GeSe-LiBiTe2 in the rhombohedral and cubic phases feature a similar multiple-valley energy-converged valence band of L and Σ bands. The observed high carrier concentration (∼1020 cm–3) reflects the effective convergence of these bands, enabling a high density-of-states effective mass and an enhanced power factor. Moreover, a very low lattice thermal conductivity of 0.6–0.5 W m–1 K–1 from 300 to 723 K is achieved in 0.9GeSe-0.1LiBiTe2, approaching the amorphous limit value. This remarkably low lattice thermal conductivity is related to phonon scattering from point defects, planar vacancies, and ferroelectric instability-induced low-energy Einstein oscillators. Finally, a maximum ZT value of 1.1 to 1.3 at 723 K is obtained, with a high average ZT value of over 0.8 (400–723 K) in 0.9GeSe-0.1LiBiTe2 samples. This study establishes a viable route for tailoring crystal structures to significantly improve the performance of GeSe-related compounds.
0

Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites

Yilin Jiang et al.Jul 14, 2024
Abstract GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm −1 K −1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm −1 K −2 at 300 K). Consequently, we obtain a maximum figure of merit Z max of 4.0 × 10 −3 K −1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.