XW
Xiao‐Jing Wang
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
61
(57% Open Access)
Cited by:
15,172
h-index:
86
/
i10-index:
179
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model

Xiao‐Jing Wang et al.Oct 15, 1996
Fast neuronal oscillations (gamma, 20–80 Hz) have been observed in the neocortex and hippocampus during behavioral arousal. Using computer simulations, we investigated the hypothesis that such rhythmic activity can emerge in a random network of interconnected GABAergic fast-spiking interneurons. Specific conditions for the population synchronization, on properties of single cells and the circuit, were identified. These include the following: (1) that the amplitude of spike afterhyperpolarization be above the GABA A synaptic reversal potential; (2) that the ratio between the synaptic decay time constant and the oscillation period be sufficiently large; (3) that the effects of heterogeneities be modest because of a steep frequency–current relationship of fast-spiking neurons. Furthermore, using a population coherence measure, based on coincident firings of neural pairs, it is demonstrated that large-scale network synchronization requires a critical (minimal) average number of synaptic contacts per cell, which is not sensitive to the network size. By changing the GABA A synaptic maximal conductance, synaptic decay time constant, or the mean external excitatory drive to the network, the neuronal firing frequencies were gradually and monotonically varied. By contrast, the network synchronization was found to be high only within a frequency band coinciding with the gamma (20–80 Hz) range. We conclude that the GABA A synaptic transmission provides a suitable mechanism for synchronized gamma oscillations in a sparsely connected network of fast-spiking interneurons. In turn, the interneuronal network can presumably maintain subthreshold oscillations in principal cell populations and serve to synchronize discharges of spatially distributed neurons.
0

The importance of mixed selectivity in complex cognitive tasks

Mattia Rigotti et al.May 1, 2013
Single-neuron activity in the prefrontal cortex (PFC) is tuned to mixtures of multiple task-related aspects. Such mixed selectivity is highly heterogeneous, seemingly disordered and therefore difficult to interpret. We analysed the neural activity recorded in monkeys during an object sequence memory task to identify a role of mixed selectivity in subserving the cognitive functions ascribed to the PFC. We show that mixed selectivity neurons encode distributed information about all task-relevant aspects. Each aspect can be decoded from the population of neurons even when single-cell selectivity to that aspect is eliminated. Moreover, mixed selectivity offers a significant computational advantage over specialized responses in terms of the repertoire of input–output functions implementable by readout neurons. This advantage originates from the highly diverse nonlinear selectivity to mixtures of task-relevant variables, a signature of high-dimensional neural representations. Crucially, this dimensionality is predictive of animal behaviour as it collapses in error trials. Our findings recommend a shift of focus for future studies from neurons that have easily interpretable response tuning to the widely observed, but rarely analysed, mixed selectivity neurons. When an animal is performing a cognitive task, individual neurons in the prefrontal cortex show a mixture of responses that is often difficult to decipher and interpret; here new computational methods to decode and extract rich sets of information from these neural responses are revealed and demonstrate how this mixed selectivity offers a computational advantage over specialized cells. When an animal performs a cognitive task, individual neurons in the prefrontal cortex are often 'tuned' to various aspects related to the behaviour. The resulting mixture of responses is often difficult to decipher. This study of neural activity in monkeys performing an object sequence memory task was designed to establish whether the predominance of mixed selectivity neurons in the prefrontal cortex is critical to the function being performed. The results suggest that neurons with mixed selectivity contain as much information as those that are highly specialized in encoding a single task-relevant aspect. And mixed selectivity neurons actually offer a significant computational advantage over specialized cells in some respects. The new computational methods developed for this work to extract rich sets of information from recorded neural activity should make it easier to study the widely observed but rarely analysed mixed selectivity neurons.
0

A Recurrent Network Mechanism of Time Integration in Perceptual Decisions

KongFatt Wong‐Lin et al.Jan 25, 2006
Recent physiological studies using behaving monkeys revealed that, in a two-alternative forced-choice visual motion discrimination task, reaction time was correlated with ramping of spike activity of lateral intraparietal cortical neurons. The ramping activity appears to reflect temporal accumulation, on a timescale of hundreds of milliseconds, of sensory evidence before a decision is reached. To elucidate the cellular and circuit basis of such integration times, we developed and investigated a simplified two-variable version of a biophysically realistic cortical network model of decision making. In this model, slow time integration can be achieved robustly if excitatory reverberation is primarily mediated by NMDA receptors; our model with only fast AMPA receptors at recurrent synapses produces decision times that are not comparable with experimental observations. Moreover, we found two distinct modes of network behavior, in which decision computation by winner-take-all competition is instantiated with or without attractor states for working memory. Decision process is closely linked to the local dynamics, in the “decision space” of the system, in the vicinity of an unstable saddle steady state that separates the basins of attraction for the two alternative choices. This picture provides a rigorous and quantitative explanation for the dependence of performance and response time on the degree of task difficulty, and the reason for which reaction times are longer in error trials than in correct trials as observed in the monkey experiment. Our reduced two-variable neural model offers a simple yet biophysically plausible framework for studying perceptual decision making in general.
0

What Determines the Frequency of Fast Network Oscillations With Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance

Nicolas Brunel et al.Jul 1, 2003
When the local field potential of a cortical network displays coherent fast oscillations ( approximately 40-Hz gamma or approximately 200-Hz sharp-wave ripples), the spike trains of constituent neurons are typically irregular and sparse. The dichotomy between rhythmic local field and stochastic spike trains presents a challenge to the theory of brain rhythms in the framework of coupled oscillators. Previous studies have shown that when noise is large and recurrent inhibition is strong, a coherent network rhythm can be generated while single neurons fire intermittently at low rates compared to the frequency of the oscillation. However, these studies used too simplified synaptic kinetics to allow quantitative predictions of the population rhythmic frequency. Here we show how to derive quantitatively the coherent oscillation frequency for a randomly connected network of leaky integrate-and-fire neurons with realistic synaptic parameters. In a noise-dominated interneuronal network, the oscillation frequency depends much more on the shortest synaptic time constants (delay and rise time) than on the longer synaptic decay time, and approximately 200-Hz frequency can be realized with synaptic time constants taken from slice data. In a network composed of both interneurons and excitatory cells, the rhythmogenesis is a compromise between two scenarios: the fast purely interneuronal mechanism, and the slower feedback mechanism (relying on the excitatory-inhibitory loop). The properties of the rhythm are determined essentially by the ratio of time scales of excitatory and inhibitory currents and by the balance between the mean recurrent excitation and inhibition. Faster excitation than inhibition, or a higher excitation/inhibition ratio, favors the feedback loop and a much slower oscillation (typically in the gamma range).
0

Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory

Xiao‐Jing WangNov 1, 1999
Delay-period activity of prefrontal cortical cells, the neural hallmark of working memory, is generally assumed to be sustained by reverberating synaptic excitation in the prefrontal cortical circuit. Previous model studies of working memory emphasized the high efficacy of recurrent synapses, but did not investigate the role of temporal synaptic dynamics. In this theoretical work, I show that biophysical properties of cortical synaptic transmission are important to the generation and stabilization of a network persistent state. This is especially the case when negative feedback mechanisms (such as spike-frequency adaptation, feedback shunting inhibition, and short-term depression of recurrent excitatory synapses) are included so that the neural firing rates are controlled within a physiological range (10–50 Hz), in spite of the exuberant recurrent excitation. Moreover, it is found that, to achieve a stable persistent state, recurrent excitatory synapses must be dominated by a slow component. If neuronal firings are asynchronous, the synaptic decay time constant needs to be comparable to that of the negative feedback; whereas in the case of partially synchronous dynamics, it needs to be comparable to a typical interspike interval (or oscillation period). Slow synaptic current kinetics also leads to the saturation of synaptic drive at high firing frequencies that contributes to rate control in a persistent state. For these reasons the slow NMDA receptor-mediated synaptic transmission is likely required for sustaining persistent network activity at low firing rates. This result suggests a critical role of the NMDA receptor channels in normal working memory function of the prefrontal cortex.
1

A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex

Rishidev Chaudhuri et al.Oct 1, 2015
We developed a large-scale dynamical model of the macaque neocortex, which is based on recently acquired directed- and weighted-connectivity data from tract-tracing experiments, and which incorporates heterogeneity across areas. A hierarchy of timescales naturally emerges from this system: sensory areas show brief, transient responses to input (appropriate for sensory processing), whereas association areas integrate inputs over time and exhibit persistent activity (suitable for decision-making and working memory). The model displays multiple temporal hierarchies, as evidenced by contrasting responses to visual versus somatosensory stimulation. Moreover, slower prefrontal and temporal areas have a disproportionate impact on global brain dynamics. These findings establish a circuit mechanism for "temporal receptive windows" that are progressively enlarged along the cortical hierarchy, suggest an extension of time integration in decision making from local to large circuits, and should prompt a re-evaluation of the analysis of functional connectivity (measured by fMRI or electroencephalography/magnetoencephalography) by taking into account inter-areal heterogeneity.
1
Citation550
0
Save
Load More