JZ
Jie Zhu
Author with expertise in Mechanisms and Implications of Ferroptosis in Cancer
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
30
(80% Open Access)
Cited by:
333
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis

Miaomiao Gao et al.Apr 23, 2020
Lung squamous cell carcinoma (LUSC) is often diagnosed at the advanced stage with poor prognosis. The mechanisms of its pathogenesis and prognosis require urgent elucidation. This study was performed to screen potential biomarkers related to the occurrence, development and prognosis of LUSC to reveal unknown physiological and pathological processes. Using bioinformatics analysis, the lung squamous cell carcinoma microarray datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were analyzed to identify differentially expressed genes (DEGs). Furthermore, PPI and WGCNA network analysis were integrated to identify the key genes closely related to the process of LUSC development. In addition, survival analysis was performed to achieve a prognostic model that accomplished good prediction accuracy. Three hundred and thirty–seven up–regulated and 119 down-regulated genes were identified, in which four genes have been found to play vital roles in LUSC development, namely CCNA2, AURKA, AURKB, and FEN1. The prognostic model contained 5 genes, which were all detrimental to prognosis. The AUC of the established prognostic model for predicting the survival of patients at 1, 3, and 5 years was 0.692, 0.722, and 0.651 in the test data, respectively. In conclusion, this study identified several biomarkers of significant interest for additional investigation of the therapies and methods of prognosis of lung squamous cell carcinoma.
0
Citation60
0
Save
0

Systematic review of computational methods for drug combination prediction

Weikaixin Kong et al.Jan 1, 2022
Synergistic effects between drugs are rare and highly context-dependent and patient-specific. Hence, there is a need to develop novel approaches to stratify patients for optimal therapy regimens, especially in the context of personalized design of combinatorial treatments. Computational methods enable systematic in-silico screening of combination effects, and can thereby prioritize most potent combinations for further testing, among the massive number of potential combinations. To help researchers to choose a prediction method that best fits for various real-world applications, we carried out a systematic literature review of 117 computational methods developed to date for drug combination prediction, and classified the methods in terms of their combination prediction tasks and input data requirements. Most current methods focus on prediction or classification of combination synergy, and only a few methods consider the efficacy and potential toxicity of the combinations, which are the key determinants of therapeutic success of drug treatments. Furthermore, there is a need to further develop methods that enable dose-specific predictions of combination effects across multiple doses, which is important for clinical translation of the predictions, as well as model-based identification of biomarkers predictive of heterogeneous drug combination responses. Even if most of the computational methods reviewed focus on anticancer applications, many of the modelling approaches are also applicable to antiviral and other diseases or indications.
0

Prediction and Optimization of NaV1.7 Sodium Channel Inhibitors Based on Machine Learning and Simulated Annealing

Weikaixin Kong et al.May 18, 2020
Although the NaV1.7 sodium channel is a promising drug target for pain, traditional screening strategies for discovery of NaV1.7 inhibitors are very painstaking and time-consuming. Herein, we aimed to build machine learning models for screening and design of potent and effective NaV1.7 sodium channel inhibitors. We customized the imbalanced data set from ChEMBL and BindingDB to train and filter the best classification model. Then, the whole-cell voltage-clamp was employed to validate the inhibitors. We assembled a molecular group optimization method by combining the Grammar Variational Autoencoder, classification model, and simulated annealing. We found that the RF-CDK model (random forest + CDK fingerprint) performs best in the imbalanced data set. Of the three compounds that may have inhibitory effects, nortriptyline has been experimentally verified. In the molecule optimization process, 40 molecules located in the applicability domain of RF-CDK were used as a starting point, among which 34 molecules evolved to molecules with greater molecular scores (MS). The molecule with the highest MS was derived from CHEMBL2325245. The model and method we developed for NaV1.7 inhibitors are also applicable to other targets.
0

Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis

Yiming Wang et al.Oct 18, 2020
Hyperuricemia (HUA) is a risk factor for chronic kidney disease (CKD). Serum uric acid (SUA) levels in CKD stage 3–4 patients closely correlate with hyperuricemic nephropathy (HN) morbidity. New uric acid (UA)-lowering strategies are required to prevent CKD. The multiple-purpose connectivity map (CMAP) was used to discover potential molecules against HUA and renal fibrosis. We used HUA and unilateral ureteral occlusion (UUO) model mice to verify renoprotective effects of molecules and explore related mechanisms. In vitro experiments were performed in HepG2 and NRK-52E cells induced by UA. Esculetin was the top scoring compound and lowered serum uric acid (SUA) levels with dual functions on UA excretion. Esculetin exerted these effects by inhibiting expression and activity of xanthine oxidase (XO) in liver, and modulating UA transporters in kidney. The mechanism by which esculetin suppressed XO was related to inhibiting the nuclear translocation of hexokinase 2 (HK2). Esculetin was anti-fibrotic in HUA and UUO mice through inhibiting TGF-β1-activated profibrotic signals. The renoprotection effects of esculetin in HUA mice were associated with lower SUA, alleviation of oxidative stress, and inhibition of fibrosis. Esculetin is a candidate urate-lowering drug with renoprotective activity and the ability to inhibit XO, promote excretion of UA, protect oxidative stress injury, and reduce renal fibrosis.
0
Citation14
0
Save
0

An immunity and pyroptosis gene-pair signature predicts overall survival in acute myeloid leukemia

Weikaixin Kong et al.Aug 9, 2022
Abstract Treatment responses of patients with acute myeloid leukemia (AML) are known to be heterogeneous, posing challenges for risk scoring and treatment stratification. In this retrospective multi-cohort study, we investigated whether combining pyroptosis- and immune-related genes improves prognostic classification of AML patients. Using a robust gene pairing approach, which effectively eliminates batch effects across heterogeneous patient cohorts and transcriptomic data, we developed an immunity and pyroptosis-related prognostic (IPRP) signature that consists of 15 genes. Using 5 AML cohorts ( n = 1327 patients total), we demonstrate that the IPRP score leads to more consistent and accurate survival prediction performance, compared with 10 existing signatures, and that IPRP scoring is widely applicable to various patient cohorts, treatment procedures and transcriptomic technologies. Compared to current standards for AML patient stratification, such as age or ELN2017 risk classification, we demonstrate an added prognostic value of the IPRP risk score for providing improved prediction of AML patients. Our web-tool implementation of the IPRP score and a simple 4-factor nomogram enables practical and robust risk scoring for AML patients. Even though developed for AML patients, our pan-cancer analyses demonstrate a wider application of the IPRP signature for prognostic prediction and analysis of tumor-immune interplay also in multiple solid tumors.
0
Citation11
0
Save
0

Expression and Prognostic Characteristics of m6A RNA Methylation Regulators in Colon Cancer

Liting Huang et al.Feb 21, 2021
Colon cancer is a common and leading cause of death and malignancy worldwide. N6-methylation of adenosine (m6A) is the most common reversible mRNA modification in eukaryotes, and it plays a crucial role in various biological functions in vivo. Dysregulated expression and genetic changes of m6A regulators have been correlated with tumorigenesis, cancer cell proliferation, tumor microenvironment, and prognosis in cancers. This study used RNA-seq and colon cancer clinical data to explore the relationship between N6-methylation and colon cancer. Based on the seven m6A regulators related to prognosis, three molecular subgroups of colon cancer were identified. Surprisingly, we found that each subgroup had unique survival characteristics. We then identified three subtypes of tumors based on 299 m6A phenotype-related genes, and one subtype was characterized as an immunosuppressive tumor and patients in this subtype may be more suitable for immunotherapy than other subtypes. Finally, using m6A-related genes and clinical information from The Cancer Genome Atlas cohort, we constructed a prognosis model, and this model could be used to predict the prognosis of patients in clinics.
0
Citation11
0
Save
0

Prognostic model of patients with liver cancer based on tumor stem cell content and immune process

Weikaixin Kong et al.Aug 27, 2020
Globally, liver hepatocellular carcinoma (LIHC) has a high mortality and recurrence rate, leading to poor prognosis. The recurrence of LIHC is closely related to two aspects: degree of immune infiltration and content of tumor stem cells. Hence, this study aimed to used RNA-seq and clinical data of LIHC from The Cancer Genome Atlas, Estimation of Stromal and Immune cells in Malignant Tumours, mRNA stemness index score, and weighted gene correlation network analysis methods to find genes significantly linked to the aforementioned two aspects. Key genes and clinical factors were used as input. Lasso regression and multivariate Cox regression were conducted to build an effective prognostic model for patients with liver cancer. Finally, four key genes (KLHL30, PLN, LYVE1, and TIMD4) and four clinical factors (Asian, age, grade, and bilirubin) were included in the prognostic model, namely Immunity and Cancer-stem-cell Related Prognosis (ICRP) score. The ICRP score achieved a great performance in test set. The area under the curve value of the ICRP score in test set for 1, 3, and 5 years was 0.708, 0.723, and 0.765, respectively, which was better than that of other prognostic prediction methods for LIHC. The C-index evaluation method also reached the same conclusion.
0
Citation11
0
Save
Load More