YK
Yutai Katoh
Author with expertise in Ceramic Materials and Processing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(30% Open Access)
Cited by:
2,381
h-index:
65
/
i10-index:
302
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Silicon Carbide Oxidation in Steam up to 2 MPa

Kurt Terrani et al.Jul 4, 2014
Growth and microstructure of a protective or nonprotective SiO 2 scale and the subsequent volatilization of scale formed on high‐purity chemical vapor deposited ( CVD ) SiC and nuclear‐grade SiC / SiC composites have been studied during high‐temperature 100% steam exposure. The environmental parameters of interest were temperature from 1200°C to 1700°C, pressure of 0.1 to 2 MPa and flow velocities of 0.23 to 145 cm/s. Scale microstructure was characterized via electron microscopy and X‐ray diffractometry. The Arrhenius dependence of the parabolic oxidation and linear volatilization rate constants were determined. The linear volatilization rate exhibited a strong dependence on steam partial pressure with a weaker dependence on flow velocity. At high steam pressures, the oxide scale developed substantial porosity, which significantly accelerated material recession. The dominant oxide phase for the conditions studied was cristobalite. The oxidation behavior of SiC / SiC composite was strongly dependent on the state of the surface, specifically whether steam could find easy entry into the material via surface‐exposed interface layers. For the case where these as‐machined interfaces were surface coated with matrix CVD SiC , composite recession was found to be essentially that of high‐purity CVD SiC .
0

Response of 11B enriched ZrB2 ultra-high temperature ceramic to neutron irradiation at elevated temperatures

Yan-Ru Lin et al.Jun 14, 2024
ZrB2, an ultra-high temperature ceramic (UHTC) is being considered for use in fusion reactor first-wall structures, yet its response to irradiation remains poorly understood. This study employed scanning/transmission electron microscopy (S/TEM), synchrotron X-ray diffraction (XRD), finite element calculations, and thermal property measurements to thoroughly investigate the neutron-irradiation effects on 11B-enriched ZrB2. Neutron irradiations were conducted at 220 °C and 620 °C, with a neutron fluence of 2.2 × 1025 neutron/m2 (energy > 0.1 MeV), resulting in 3.9 dpa and 4200 appm He. The study revealed the unusual prevalence of prism loops and a > c anisotropic lattice swelling, likely linked to the low c/a ratio of ZrB2, leading to grain boundary microcracking. Reducing the grain sizes was effective in reducing intergranular cracking and macroscopic swelling. The observation of cavities in ZrB2 irradiated at 620 °C, as opposed to 220 °C, prompts questions about the temperature at which vacancies in ZrB2 become mobile, and the role of neutron absorption by 10B in elevating irradiation temperatures. Isotopic enrichment in 11B proves to be a viable strategy for mitigating helium production in transition-metal diborides, which is a critical consideration for nuclear applications. Irradiation-induced defects reduce the thermal diffusivity and conductivity of ZrB2 by a factor of 4–9, which has important implications for its role as a plasma-facing material in fusion reactors that drive high heat fluxes through first-wall materials. This comprehensive study lays the foundation for understanding ZrB2 behavior under neutron irradiation and highlights important phenomena to consider for various material applications.
0

Simulations of radiation damage accumulation in Fe-9Cr under pulsed irradiation conditions representative of inertial fusion energy

Sicong He et al.Aug 12, 2024
Structural materials for laser-based inertial fusion energy (IFE) reactor concepts are expected to operate under pulsed irradiation conditions, with cycles consisting of microsecond-long neutron bursts followed by inter-pulse periods of up to one second in duration. During each laser shot, irradiation damage is introduced at dose rates that are up to six orders of magnitude higher than those in their magnetic fusion energy (MFE) counterparts. Under certain conditions, the inter-pulse periods may last an amount of time sufficient to anneal much of the damage introduced during each shot. This phenomenon is highly temperature dependent, with pulsed heating directly linked to the pulsed damage, large surface temperature spikes may also occur. As such, this intermittent mode of operation has the potential to lead to fundamental differences in how irradiation damage accumulates in structural reactor materials. However, damage to structural materials under IFE conditions has received comparatively much less attention than in MFE, as pulsed conditions add yet an extra dimension to the already extremely challenging problem of microstructural evolution under fusion neutron irradiation in structural materials. In this work we use the stochastic cluster dynamics (SCD) method to simulate the evolution with time of defect cluster concentrations under IFE conditions. We consider the Laser Inertial Fusion Energy (LIFE) reactor concept as the representative IFE design for our study, for which detailed spectral information is available, including gas transmutant production. We simulate several pulse frequencies and three different temperatures, and compare the results with continuous irradiation cases under identical average dose rates. The simulations are run in Fe-9Cr system as a model alloy for reduced-activation ferritic/martensitic (RAFM) steels, which are the leading structural material candidates for first-wall structures in MFE and IFE devices. We find that, in practically all scenarios, pulsed irradiation restricts the formation of helium-vacancy clusters relative to the levels seen under equivalent steady irradiation conditions. As well, although self-interstitial atom clusters do accumulate under pulsed operation, their number densities remain up to an order of magnitude lower than in continuous irradiation conditions. Based on the SCD results, we provide a temperature-pulse rate map to identify regions where pulsed irradiation may lead to larger defect accumulation than under continuous irradiation.