BE
Brendan Egan
Author with expertise in Sports Science and Performance Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
1,169
h-index:
28
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle

Brendan Egan et al.Mar 23, 2010
The Journal of PhysiologyVolume 588, Issue 10 p. 1779-1790 Free Access Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle Brendan Egan, Brendan Egan School of Health and Human PerformanceSearch for more papers by this authorBrian P. Carson, Brian P. Carson School of Health and Human PerformanceSearch for more papers by this authorPablo M. Garcia-Roves, Pablo M. Garcia-Roves Department of Physiology & Pharmacology, Karolinska Institute, SE-171 77 Stockholm, SwedenSearch for more papers by this authorAlexander V. Chibalin, Alexander V. Chibalin Department of Molecular Medicine & Surgery, Section of Integrative PhysiologySearch for more papers by this authorFiona M. Sarsfield, Fiona M. Sarsfield School of Health and Human PerformanceSearch for more papers by this authorNiall Barron, Niall Barron Centre for Preventive Medicine National Institute for Cellular Biotechnology, Dublin City University, IrelandSearch for more papers by this authorNoel McCaffrey, Noel McCaffrey School of Health and Human Performance Centre for Preventive MedicineSearch for more papers by this authorNiall M. Moyna, Niall M. Moyna School of Health and Human Performance Centre for Preventive MedicineSearch for more papers by this authorJuleen R. Zierath, Juleen R. Zierath Department of Molecular Medicine & Surgery, Section of Integrative Physiology Department of Physiology & Pharmacology, Karolinska Institute, SE-171 77 Stockholm, SwedenSearch for more papers by this authorDonal J. O’Gorman, Donal J. O’Gorman School of Health and Human Performance Centre for Preventive MedicineSearch for more papers by this author Brendan Egan, Brendan Egan School of Health and Human PerformanceSearch for more papers by this authorBrian P. Carson, Brian P. Carson School of Health and Human PerformanceSearch for more papers by this authorPablo M. Garcia-Roves, Pablo M. Garcia-Roves Department of Physiology & Pharmacology, Karolinska Institute, SE-171 77 Stockholm, SwedenSearch for more papers by this authorAlexander V. Chibalin, Alexander V. Chibalin Department of Molecular Medicine & Surgery, Section of Integrative PhysiologySearch for more papers by this authorFiona M. Sarsfield, Fiona M. Sarsfield School of Health and Human PerformanceSearch for more papers by this authorNiall Barron, Niall Barron Centre for Preventive Medicine National Institute for Cellular Biotechnology, Dublin City University, IrelandSearch for more papers by this authorNoel McCaffrey, Noel McCaffrey School of Health and Human Performance Centre for Preventive MedicineSearch for more papers by this authorNiall M. Moyna, Niall M. Moyna School of Health and Human Performance Centre for Preventive MedicineSearch for more papers by this authorJuleen R. Zierath, Juleen R. Zierath Department of Molecular Medicine & Surgery, Section of Integrative Physiology Department of Physiology & Pharmacology, Karolinska Institute, SE-171 77 Stockholm, SwedenSearch for more papers by this authorDonal J. O’Gorman, Donal J. O’Gorman School of Health and Human Performance Centre for Preventive MedicineSearch for more papers by this author First published: 14 May 2010 https://doi.org/10.1113/jphysiol.2010.188011Citations: 254 Corresponding author D. J. O’Gorman: School of Health and Human Performance, Dublin City University, Dublin 9, Ireland. Email: donal.ogorman@dcu.ie AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract Skeletal muscle contraction increases intracellular ATP turnover, calcium flux, and mechanical stress, initiating signal transduction pathways that modulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent transcriptional programmes. The purpose of this study was to determine if the intensity of exercise regulates PGC-1α expression in human skeletal muscle, coincident with activation of signalling cascades known to regulate PGC-1α transcription. Eight sedentary males expended 400 kcal (1674 kj) during a single bout of cycle ergometer exercise on two separate occasions at either 40% (LO) or 80% (HI) of . Skeletal muscle biopsies from the m. vastus lateralis were taken at rest and at +0, +3 and +19 h after exercise. Energy expenditure during exercise was similar between trials, but the high intensity bout was shorter in duration (LO, 69.9 ± 4.0 min; HI, 36.0 ± 2.2 min, P < 0.05) and had a higher rate of glycogen utilization (P < 0.05). PGC-1α mRNA abundance increased in an intensity-dependent manner +3 h after exercise (LO, 3.8-fold; HI, 10.2-fold, P < 0.05). AMP-activated protein kinase (AMPK) (2.8-fold, P < 0.05) and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation (84%, P < 0.05) increased immediately after HI but not LO. p38 mitogen-activated protein kinase (MAPK) phosphorylation increased after both trials (∼2.0-fold, P < 0.05), but phosphorylation of the downstream transcription factor, activating transcription factor-2 (ATF-2), increased only after HI (2.4-fold, P < 0.05). Cyclic-AMP response element binding protein (CREB) phosphorylation was elevated at +3 h after both trials (∼80%, P < 0.05) and class IIa histone deacetylase (HDAC) phosphorylation increased only after HI (2.0-fold, P < 0.05). In conclusion, exercise intensity regulates PGC-1α mRNA abundance in human skeletal muscle in response to a single bout of exercise. This effect is mediated by differential activation of multiple signalling pathways, with ATF-2 and HDAC phosphorylation proposed as key intensity-dependent mediators. Abbreviations ACC acetyl-CoA carboxylase Akt/PKB v-akt murine thymoma viral oncogene homolog 1/protein kinase B AMPK AMP-activated protein kinase ATF-2 activating transcription factor 2 CaMKII calcium/calmodulin-dependent protein kinase II CRE cyclic-AMP response element CREB cyclic-AMP response element binding protein HDAC histone deacetylase MAPK mitogen-activated protein kinase MEF2 myocyte enhancer factor 2 PDK4 pyruvate dehydrogenase kinase 4 PGC-1α peroxisome proliferator-activated receptor γ coactivator-1α PKA protein kinase A PPAR peroxisome proliferator-activated receptor Introduction The transcription factor coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a critical regulator of mitochondrial biogenesis, cellular respiration and energy substrate utilization (Wu et al. 1999; St-Pierre et al. 2003; Wende et al. 2005; Rohas et al. 2007; Wende et al. 2007). The expression of PGC-1α is decreased in skeletal muscle of type 2 diabetic patients (Mootha et al. 2004) and with physical inactivity (Timmons et al. 2006). Conversely, acute skeletal muscle contraction increases PGC-1α mRNA abundance (Pilegaard et al. 2003; Russell et al. 2005; Vissing et al. 2005) and exercise training is associated with elevated PGC-1α protein content (Burgomaster et al. 2008). Nevertheless, relatively little is known about the intracellular mechanisms that regulate PGC-1α expression in human skeletal muscle. Characterization of the promoter region of the PPARGC1A gene reveals conserved myocyte enhancer factor 2 (MEF2) and cyclic-AMP response element (CRE) sequences (Esterbauer et al. 1999; Irrcher et al. 2008), which regulate PGC-1α transcription in response to physiological stimuli (Czubryt et al. 2003; Handschin et al. 2003; Irrcher et al. 2008). Mutations of the MEF2 and CRE sites ablate the responsiveness of the PGC-1α promoter to motor nerve stimulation in rodent skeletal muscle (Akimoto et al. 2004) and this suggests that transcriptional activation of PGC-1α is dependent on functional interactions with regulatory factors on the MEF2 and CRE cis elements on the PGC-1α promoter (Akimoto et al. 2008). Several targets have been implicated as regulatory partners for MEF2 and CRE binding sites (Akimoto et al. 2005; Liu et al. 2005; Thomson et al. 2008; Wright et al. 2007a). In rodent muscle cells, the binding of activating transcription factor (ATF)-2, CRE binding protein (CREB) and class IIa histone deacetylases (HDACs) have been reported to modulate PGC-1α gene transcription (Akimoto et al. 2005, Akimoto et al. 2008; Irrcher et al. 2008; Wright et al. 2007a). The activation of AMP-activated protein kinase (AMPK), calcium/calmodulin-dependent protein kinase (CaMK) II and p38 mitogen-activated protein kinase (MAPK) signalling cascades are well characterized upstream modulators of PGC-1α expression in skeletal muscle (Akimoto et al. 2005; Jager et al. 2007; Wright et al. 2007a). These cascades activate downstream regulatory factors (Akimoto et al. 2005; Liu et al. 2005; Thomson et al. 2008; Wright et al. 2007a), and in the case of AMPK (Jager et al. 2007) and p38 (Puigserver et al. 2001), also directly phosphorylate PGC-1α, thereby increasing transcriptional activation of the PGC-1α promoter through an auto-regulatory mechanism. Given that skeletal muscle energy flux during contraction is intensity dependent, it is unsurprising that signal transduction cascades are differentially regulated by the intensity of an acute exercise challenge (Widegren et al. 2000; Wojtaszewski et al. 2000; Rose et al. 2006). Whether differential activation of these signalling cascades could lead to an intensity-dependent regulation of downstream gene targets and transcriptional processes is unknown. Devising exercise modalities that are especially metabolically effective and time efficient in upregulating PGC-1α, which should then optimally stimulate gene expression to increase insulin sensitivity and fatty acid oxidation, has been proposed as a key treatment of metabolic disease (Benton et al. 2008). Thus, we focused on the modulation of PGC-1α mRNA abundance by the intensity of exercise, which in itself is a key determinant in the nature of adaptation to regular physical activity (Dudley et al. 1982). The purpose of this study was to determine if the intensity of a single bout of exercise differentially regulates the expression of PGC-1α and its regulatory signalling cascades in human skeletal muscle. Having observed an intensity-dependent increase in PGC-1α mRNA abundance during recovery from a single bout of isocaloric exercise, we focused on the regulatory factors known to regulate the PGC-1α promoter, namely ATF-2, CREB and class IIa HDACs and their upstream kinases. We hypothesized that the intensity-dependent effect of exercise on PGC-1α gene expression was mediated by differential activation of signal cascades purported to regulate transcription through PGC-1α promoter activity, thereby forming part of a signal transduction network that regulates PGC-1α transcription (see Fig. 6). Figure 6Open in figure viewerPowerPoint Proposed model of PGC-1α gene activation in human skeletal muscle by a single bout of exercise Acute myofibrillar contraction results in the phosphorylation (p) and activation of AMPK, CaMKII and p38 MAPK through molecular sensing of increased ATP turnover, increased calcium release from the sarcoplasmic reticulum, and mechanical stress, respectively. AMPK and CaMKII phosphorylate class IIa HDACs, leading to their nuclear exclusion and relieving the inhibitory effect of HDACs on MEF2 transcriptional activity at the MEF2 binding sequence on the PGC-1α promoter. AMPK and CaMKII also phosphorylate and activate CREB, resulting in an activating effect on the CRE sequence of the PGC-1α promoter. p38 MAPK phosphorylates and activates ATF-2, that in turn acts on the same CRE site resulting in transcriptional activation. These combined effects on the MEF2 and CRE sequences result in increased PGC-1α promoter activity and increased PGC-1α gene transcription. The intensity of the exercise bout may modulate the magnitude of this response with the phosphorylation of class IIa HDACs and ATF-2 being sensitive to the intensity of contraction, analogous to high intensity exercise (HI). Methods Participants and ethical approval Eight healthy, sedentary males volunteered to participate in the study (24 ± 1 years, 1.79 ± 0.02 m, 80.3 ± 2.2 kg, 25.1 ± 1.2 kg m−2, 16.0 ± 3.3% body fat). All experimental procedures were approved by the Dublin City University Research Ethics Committee in accordance with the Declaration of Helsinki. Each participant underwent a thorough medical screening and provided written informed consent prior to participation. Subjects were physically inactive for at least 6 months and peak oxygen uptake (, 3.23 ± 0.18 l min−1) was determined by indirect calorimetry (Vmax 29C, SensorMedics, Yorba Linda, CA, USA) using an incremental protocol on an electronically braked stationary cycle ergometer (Ergoline 900, SensorMedics). Experimental design Subjects were required to complete two isocaloric acute exercise trials at (i) 40% (low intensity; LO) and (ii) 80% (high intensity; HI) , on separate occasions in random order separated by at least 1 week. Seven days before the first experimental trial, the power outputs required to elicit 40% and 80% were verified. For the main experimental trials, subjects reported to the Metabolic Physiology Research Unit after an overnight fast and had a resting muscle biopsy taken (Pre). Subjects then consumed a high carbohydrate breakfast and remained in the laboratory for 4 h, at which point they started the exercise bout. Participants began cycling on a stationary ergometer (cadence at 70–75 r.p.m.) and continued until 400 kcal (1674 kj) were expended, as determined by indirect calorimetry monitored on a minute-by-minute basis (Weir, 1949). A muscle biopsy was taken immediately (+0 h) and 3 h after the cessation of exercise (+3 h). During this 3 h of recovery, subjects remained in the laboratory and were permitted to consume only water ad libitum. After the third biopsy (+3 h), subjects were provided with a standard meal, after which they were free to leave the laboratory. Another meal and snack were provided to eat later that evening and water was allowed ad libitum. No other food or beverages were allowed. The following morning, subjects returned to the laboratory at the same time after an overnight fast for a final muscle biopsy at 19 h after cessation of exercise (+19 h). Muscle biopsies Each muscle biopsy was taken from the m. vastus lateralis under local anaesthesia. An area of skin was anaesthetized with 2% lidocaine and a small (0.5 cm) incision made. The biopsy needle was inserted into the muscle and, with suction applied, ∼100 mg of tissue was removed. A fresh incision was made for each of the eight biopsies, at least 2 cm from a previous biopsy site. Muscle samples were snap-frozen in liquid nitrogen and stored at −80°C until analysis. Dietary control Pre-exercise preparation was the same for each exercise trial. Subjects were asked to abstain from caffeine and alcohol and refrain from physical activity of any kind for 24 h prior to testing. Subjects were asked to keep a one-day food diary on the day prior to the first experimental trial and asked to repeat the content and pattern of dietary intake on the day preceding the second experimental trial. The dietary intake during each experimental trial was standardized, in terms of food type, total energy intake and macronutrient composition, for each participant. Total daily energy expenditure was estimated by the Harris–Benedict equation (Harris & Benedict, 1919), multiplied by a physical activity factor (1.4) with 400 kcal added to account for the exercise trial (Durnin, 1996). Three meals, each with 30% of predicted total energy expenditure, were provided during the day, with the remaining 10% energy provided with an evening snack. The daily energy intake (36 kcal kg−1; 151 kj kg−1) was composed of 6.0 g kg−1 carbohydrate, 0.8 g kg−1 fat, and 1.2 g kg−1 protein. Hence, the percentage contribution of each macronutrient to total energy intake was 67% carbohydrate, 20% fat and 13% protein. Muscle glycogen Frozen muscle samples (∼10 mg) were lyophilized, dissected free of connective tissue, weighed and hydrolysed with 1 m HCl by incubation at 100°C for 2 h and then neutralized with 0.67 m NaOH. Glycogen concentrations were determined by a standard enzymatic technique with fluorometric detection (Passonneau & Lauderdale, 1974). mRNA abundance Total RNA was isolated from ∼20 mg crude tissue using TRI reagent (Sigma-Aldrich, UK) as per the manufacturer's instructions. Total RNA concentration was quantified spectrophotometrically at an absorbance of 260 nm (NanoDrop ND-1000 Spectrophotometer, ThermoFisher Scientific, Waltham, MA, USA). The integrity and purity of each RNA sample was verified by gel electrophoresis (RNA 6000 Nano Lab Chip and 2100 Bioanalyzer, Agilent Technologies, Palo Alto, CA, USA) and by measuring the spectrophotometric A260/A280 (>1.8) and A260/A230 (>1.5) ratios. RNA (1 μg) was reverse transcribed to cDNA using the Reverse Transcription System (Promega, Madison, WI, USA) primed with oligo-dT(15) as per the manufacturer's instructions. The cDNA template was stored at −20°C until subsequent analysis. mRNA abundance (30 ng cDNA template per reaction) was determined using quantitative real-time PCR (ABI Prism 7500, Applied Biosystems, Foster City, CA, USA) using Assay-On-Demand primer pairs and probes (P/N 4331182, Assay IDs PGC-1α Hs00173304_m1, PDK4 Hs00176875_m1; Taqman Gene Expression Assays, Applied Biosystems) and Taqman Universal PCR Master Mix (Applied Biosystems). GAPDH mRNA (4333764F, Applied Biosystems) was stable across all time points and used as the housekeeping gene to which target mRNA expression was normalized. The average CT values of the unknown samples were converted to relative expression data using an appropriate standard curve. Protein quantification Approximately 25 mg of crude muscle was homogenized in 1 ml of ice-cold homogenization buffer (20 mm Tris (pH 7.8), 137 mm NaCl, 2.7 mm KCl, 1 mm MgCl2, 1% Triton X-100, 10% (w/v) glycerol, 10 mm NaF, 1 mm EDTA, 5 mm sodium pyrophosphate, 0.5 mm Na3VO4, 1 μg ml−1 leupeptin, 0.2 mm phenylmethyl sulfonyl fluoride, 1 μg ml−1 aprotinin, 1 mm dithiothreitol, 1 mm benzamidine, 1 μm microcystin) using a motorized pestle. Homogenates were rotated end-over-end for 60 min at 4°C and centrifuged (12,000 g for 15 min at 4°C), and the protein content of the supernatant was determined by a commercially available detergent-compatible colorimetric assay (Bio-Rad Laboratories, Hercules, CA, USA). An aliquot of muscle homogenate (50 μg protein) was mixed with Laemmli buffer (20% glycerol, 62.5 mmol l−1 Tris-HCl, 2% SDS, 0.00125% bromophenol blue, 2%β-mercaptoethanol). The samples were separated by SDS-PAGE and transferred to polyvinylidene difluoride membrane. Non-specific binding was blocked in a 5% milk/TBS-t (10 mmol l−1 Tris pH 7.5, 100 mmol l−1 NaCl, 0.1% Tween 20) for 2 h at room temperature. Membranes were incubated overnight with primary antibodies directed towards phospho-AMPKα Thr172 (1:1000; Cell Signaling Technology, Beverly, MA; no. 2531), AMPKα (1:1000; Cell Signaling; no. 2532), phospho-acetyl-CoA carboxylase (ACC) Ser79 (1:500; Cell Signaling; no. 3661), ACC (1:1000; Millipore, Billerica, MA, USA; 07-439), phospho-ATF-2 Thr71 (1:500; Cell Signaling; no. 9221), ATF-2 (1:1000; Millipore; 06-326), phospho-CaMKII Thr286 (1:1000; Cell Signaling; no. 3361), CaMKII (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA; sc-13082), phospho-CREB Ser133 (1:1000; Cell Signaling; no. 9191), CREB (1:1000; Cell Signaling; no. 9197), phospho-HDAC4/5/7 Ser632/Ser498/Ser486 (1:1000; Cell Signaling; no. 3424), HDAC4 (1:1000; Cell Signaling; no. 2072), HDAC5 (1:1000; Cell Signaling; no. 2082), phospho-p38 MAPK Thr180/Tyr182 (1:1000; Cell Signaling; no. 9211), p38 MAPK (1:1000; Cell Signaling; no. 9212), and GAPDH (1:4000; Santa Cruz; sc-25778). Membranes were washed in TBS-t and incubated with appropriate secondary horseradish peroxidase-conjugated antibodies (1:20000; Bio-Rad), visualized by enhanced chemiluminescence (ECL; GE Healthcare, Arlington Heights, IL, USA) and quantified by densitometry (GS800 Calibrated Imaging Densitometer, Bio-Rad). Samples for each subject from the respective exercise trials were compared in parallel on the same gel, and representative blots are included. GAPDH and total protein abundance of each phosphorylated protein were used for normalization where appropriate. A representative blot for each protein analysed is presented in Fig. 1. Figure 1Open in figure viewerPowerPoint Representative immunoblots Representative immunoblots corresponding to phosphorylated protein, total protein expression and loading control (GAPDH) measured before (Pre), immediately after (+0 h) and after 3 (+3 h) and 19 h (+19 h) of recovery from isocaloric (400 kcal) stationary cycle ergometer exercise at either 40% (low intensity, LO) or 80% (high intensity, HI) . See text for abbreviations and antibody descriptions. Statistical analysis Experimental data are presented as means ±s.e.m. Data were evaluated using the SigmaStat for Windows v3.11 software package (Systat Software, Inc, San Jose, CA, USA). Two-way (trial × time) repeated measures ANOVA, with Student–Neuman–Keuls post-hoc pair-wise comparisons was performed to identify differences between the two intensities of exercise for variables with serial measurements. Student's paired t test was performed to identify differences between trials for variables with single measurements. The significance level was set at α= 0.05 for all statistical tests. Results Energy expenditure and substrate utilization Total energy expenditure was similar between trials, despite the difference in exercise intensity and total exercise time (P < 0.05) (Table 1). The difference in the rate of energy expenditure (P < 0.05) resulted in a greater reliance on the relative (P < 0.05) and absolute (P < 0.05) contribution of carbohydrate oxidation during the high intensity trial. As expected, the contribution of fat oxidation to total energy expenditure was lower during the high intensity trial (P < 0.05). Table 1. Energy expenditure and metabolic responses during isocaloric low and high intensity exercise trials LO HI Total EE (kcal) 412 ± 11 403 ± 1 Rate of EE (kcal min−1) 6.0 ± 0.3 11.5 ± 0.7* Exercise intensity (%) 38.8 ± 0.4 79.4 ± 1.5* Exercise time (min) 69.9 ± 4.0 36.0 ± 2.2* RER 0.90 ± 0.01 0.98 ± 0.01* CHO oxidation rate (g min−1) 0.9 ± 0.1 2.5 ± 0.2* Total carbohydrate oxidized (g) 64 ± 2 89 ± 3* Rate of fat oxidation (g min−1) 0.23 ± 0.02 0.12 ± 0.04* Total fat oxidized (g) 15 ± 1 4 ± 1* Rate of glycogen utilization (mmol (kg dw)−1 min−1) 1.3 ± 0.2 3.1 ± 1.0* Plasma lactate at rest (mm) 1.12 ± 0.16 0.99 ± 0.14 Plasma lactate at termination (mm) 1.22 ± 0.11 7.23 ± 1.07* Values are mean ±s.e.m. *Significantly different from low intensity trial (P < 0.05). EE, energy expenditure; CHO, carbohydrate; RER, respiratory exchange ratio. Muscle glycogen content was similar at baseline (259 ± 17 vs. 249 ± 19 mmol (kg dw)−1 for the LO and HI trials, respectively) and decreased following both exercise trials (176 ± 22 vs. 128 ± 34 mmol (kg dw)−1 for the LO and HI trials, respectively; P < 0.05), but returned to baseline the following morning. The net rate of glycogen utilization was higher during the high intensity trial (1.3 ± 0.2 vs. 3.1 ± 1.0 mmol (kg dw)−1 min−1, for the LO and HI trials respectively, P < 0.05). Plasma lactate concentration was similar at rest (LO, 1.12 ± 0.16 mm; HI, 0.99 ± 0.14 mm), and was unchanged from baseline during LO, but increased to 7.23 ± 1.07 mm at the end of HI (P < 0.05, compared to both baseline and LO). PGC-1α mRNA abundance PGC-1α mRNA abundance was elevated 3.8- and 10.2-fold 3 h after LO and HI, respectively (P < 0.05), with an effect of exercise intensity observed between trials (P < 0.05) (Fig. 2). PDK4 mRNA abundance was elevated 6.8–7.2-fold at +3 h in both trials (data not shown), suggesting that intensity-dependent effects on mRNA abundance are gene-specific rather than a generalized exercise effect. Figure 2Open in figure viewerPowerPoint Intensity-dependent regulation of PGC-1α gene expression by a single bout of exercise The effect of exercise intensity on PGC-1α mRNA abundance immediately after (+0 h) and during recovery (+3 h and +19 h) from isocaloric (400 kcal) exercise bouts. Open bars represent low intensity trial, LO; filled bars represent high intensity trial, HI. PGC-1α mRNA was normalized using the housekeeping gene GAPDH. Values are means ±s.e.m., n= 8. *Significantly different from baseline within same trial (P < 0.05); †significantly different from LO at same time point (P < 0.05). Contraction-activated signal cascades AMPK phosphorylation (Fig. 3A) was similar at baseline, but increased 2.8-fold at +0 h following exercise in the high (P < 0.05) but not low intensity trial, resulting in a difference between trials (P < 0.05). Acetyl-CoA carboxylase β (ACCβ) phosphorylation (Fig. 3B) increased 2.3- and 5.2-fold immediately following exercise for LO and HI, respectively (P < 0.05), resulting in a difference between trials at this time point (P < 0.05). Figure 3Open in figure viewerPowerPoint Greater activation of AMPK signalling by a single bout of high intensity exercise The effect of exercise intensity on phosphorylation of AMPK (A) and ACCβ (B) protein immediately after (+0 h) and during recovery (+3 h and +19 h) from isocaloric (400 kcal) exercise bouts. Open bars represent low intensity trial, LO; filled bars represent high intensity trial, HI. Representative immunoblots are shown in Fig. 1. Phosphorylated protein is normalised to total protein content (con) of the respective protein. Values are means ±s.e.m., n= 8. *Significantly different from baseline within same trial (P < 0.05); †significantly different from LO at same time point (P < 0.05). p38 MAPK phosphorylation (Fig. 4A) was increased at +0 h in both exercise trials (∼2.0-fold, P < 0.05), but the phosphorylation of a downstream transcription factor, ATF-2, a regulator of PGC-1α expression, was increased only in HI (2.4-fold, P < 0.05; Fig. 4B), indicating intensity-dependent regulation of this pathway. Figure 4Open in figure viewerPowerPoint Similar activation of p38 MAPK, but greater activation of ATF-2, by a single bout of high intensity compared to low intensity exercise The effect of exercise intensity on phosphorylation of p38 MAPK (A) and ATF-2 (B) protein immediately after (+0 h) and during recovery (+3 h and +19 h) from isocaloric (400 kcal) exercise bouts. Open bars represent low intensity trial, LO; filled bars represent high intensity trial, HI. Representative immunoblots are shown in Fig. 1. Phosphorylated protein is normalised to total protein content (con) of the respective protein. Values are means ±s.e.m., n= 8. *Significantly different from baseline within same trial (P < 0.05); †significantly different from LO at same time point (P < 0.05). Total CaMKII phosphorylation (summation of βM and γ/δ isoforms; Rose et al. 2006) increased immediately following the high (84%, P < 0.05), but not low intensity trial, with a difference between trials (Fig. 5A; P < 0.05). Phosphorylation of the calcium-dependent transcription factor CREB was reduced at +0 h in HI (−64%, P < 0.05), but also tended to be reduced in LO (−36%, P= 0.104). However, CREB phosphorylation was subsequently elevated at +3 h after both trials (∼80%, P < 0.05; Fig. 5B). Phosphorylation of class IIa HDACs, purported downstream targets of both AMPK and CaMKII signalling and negative regulators of gene transcription, was measured by HDAC4/5/7 phosphorylation (Fig. 5C) and also increased only in HI at +0 h (2.0-fold, P < 0.05), consistent with the intensity-dependent activation of these upstream kinases. Figure 5Open in figure viewerPowerPoint Greater activation of CaMKII and HDACs, but not CREB, by a single bout of high intensity exercise The effect of exercise intensity on phosphorylation of CaMKII (A), CREB (B) and class IIa HDAC (C) protein immediately after (+0 h) and during recovery (+3 h and +19 h) from isocaloric (400 kcal) exercise bouts. Open bars represent low intensity trial, LO; filled bars represent high intensity trial, HI. Representative immunoblots are shown in Fig. 1. Phosphorylated protein is normalised to total protein content (con) of the respective protein. Phosphorylated HDAC4/5/7 is normalised to the summed total protein content of HDAC4 and 5. Values are means ±s.e.m., n= 8. *Significantly different from baseline within same trial (P < 0.05); †significantly different from LO at same time point (P < 0.05). Discussion In the present study, differential expression of PGC-1α mRNA following an acute bout of isocaloric exercise was associated with intensity-dependent regulation of intracellular signalling cascades. Skeletal muscle contraction activates AMPK, CaMKII and p38 MAPK signalling cascades in an intensity-dependent manner as a result of increased bioenergetic processes, calcium flux and cellular stress (Widegren et al. 2
0
Citation339
0
Save
0

1968-LB: Early Prediction of Gestational Diabetes Mellitus Using Electronic Health Records and Machine Learning

MARK GERMAINE et al.Jun 14, 2024
Introduction: The objective of this study is to assess the efficacy of machine learning models in gestational diabetes mellitus (GDM) prediction using electronic health record (EHR) data collected in the first trimester. Methods: Data were extracted from The Coombe Hospital EHRs, Dublin, spanning from 2018-2022. The year 2020 was excluded due to COVID-19-related deviations from usual screening practices. We employed four machine learning models—Random Forest, XGBoost, Logistic Regression and Explainable Boosting Machine—evaluating them using receiver operating characteristic (ROC) curve and average precision (AP). Models were trained on data within the EHRs collected during the first prenatal visit (8-14 weeks). Results: 27,500 pregnancies and 3,100 GDM cases were analyzed post-processing. Logistic Regression consistently showed high performance (full feature set ROC AUC = 0.821, AP = 0.39; top 13 features ROC AUC = 0.818, AP = 0.39; first pregnancy only ROC AUC = 0.826, AP = 0.38). Other models demonstrated varying degrees of performance, some slightly decreasing when reducing features or considering only the first pregnancy. Conclusion: Logistic regression appears to match or better the performance of more sophisticated machine learning models when predicting GDM using data from EHRs. This has the added benefit of easily explainable models for healthcare practitioners and stakeholders. Disclosure M.A. Germaine: None. A.C. O'Higgins: None. G. Healy: None. B. Egan: None. Funding This work has emanated from research supported in part by a grant from Science Foundation Ireland (18/CRT/6183).
0
Citation1
0
Save
0

“Male athletes play well to feel good, and female athletes feel good to play well” : Attitudes, beliefs, and practices pertaining to perceived sex-related differences in communication and interpersonal approach of strength and conditioning coaches in international women’s rugby union

David Nolan et al.Aug 8, 2024
Effective communication and rapport building with athletes are key tenets of coaching. As the majority of empirical evidence to date has adopted an androcentric view of strength and conditioning, a potential knowledge gap exists regarding sex-related differences in physical preparation and coaching approaches. Therefore, this study explored the attitudes, beliefs and practices of strength and conditioning coaches (n = 8; M/F, 6/2) in elite level (international) women's rugby union using semi-structured interviews (mean ±standard deviation duration 59 ± 15 min). The interviews explored differences in coaching practices for elite female rugby players compared to males, with a specific focus on the interpersonal aspects of the athlete-coach relationship. Reflexive thematic analysis was used to generate a rich qualitative dataset. The analysis resulted in the identification of higher order themes: athlete engagement, and interpersonal approach. The coaches in this study consistently perceived important differences between male and female players in factors related to engagement and interpersonal approach. Coaches adopted differing coaching practices for male and female athletes. This study provides important contextual evidence for the understanding of differences in the interpersonal relationships of female rugby players compared to male athletes from the perspective of elite-level strength coaches.
0

Test–Retest Reliability of Running Economy and Metabolic and Cardiorespiratory Parameters During a Multistage Incremental Treadmill Test in Male Middle- and Long-Distance Runners

Aidan Brady et al.Jun 1, 2024
This study investigated the test-retest reliability of running economy (RE) and metabolic and cardiorespiratory parameters related to endurance running performance using a multistage incremental treadmill test. On two occasions separated by 21-28 days, 12 male middle- and long-distance runners ran at 10, 11, 12, 13, and 14 km/hr for 8 min each stage, immediately followed by a ramp test to volitional exhaustion. Carbohydrate (10% maltodextrin solution) was consumed before and during the test to provide ∼1 g/min of exercise. RE, minute ventilation (V˙E), oxygen consumption (V˙O2), carbon dioxide production (V˙CO2), respiratory exchange ratio (RER), heart rate (HR), ratings of perceived exertion (RPE), and blood glucose and lactate concentrations were recorded for each stage and at volitional exhaustion. Time-to-exhaustion (TTE) and peak oxygen consumption (V˙O2peak) during the ramp test were also recorded. Absolute reliability, calculated as the coefficient of variation (CV) between repeated measures, ranged from 2.3% to 3.1% for RE, whereas relative reliability, calculated as the intraclass correlation coefficient (ICC), ranged from .42 to .79. V˙E, V˙O2, V˙O2peak, V˙CO2, RER, and HR had a CV of 1.1%-4.3% across all stages. TTE and RPE had a CV of 7.2% and 2.3%-10.8%, respectively, while glucose and lactate had a CV of 4.0%-17.8%. All other parameters, except for blood glucose, were demonstrated to have good-to-excellent relative reliability assessed by ICC. Measures of RE, V˙O2peak, and TTE were reliable during this two-phase multistage incremental treadmill test in a cohort of trained and highly trained male middle- and long-distance runners.
0

Postexercise Dietary Leucine Retention for Whole-Body Anabolism Is Greater With Whey Protein Isolate and Fish-Derived Protein Hydrolysate Than Nonessential Amino Acids in Trained Young Men

Mark Evans et al.Jan 1, 2024
Marine-derived proteins, such as blue whiting-derived protein hydrolysates (BWPH), represent high-quality sources of dietary protein, but their ability to support postexercise anabolism is not established. The impact of BWPH on whole-body anabolism was compared with an isonitrogenous whey protein isolate (WPI) and nonessential amino acid (NEAA) control in 10 trained young males (31 ± 4 years) who, on three separate visits, performed a session of whole-body resistance exercise and then consumed, in randomized crossover fashion, BWPH, WPI, or NEAA (0.33 g/kg; 19, 33, and 0 mg/kg leucine, respectively) with L-[1- 13 C]leucine. Breath, blood, and urine samples were collected for 6-hr postprandial to assess dietary leucine oxidation, amino acid (AA) concentrations, and 3-methylhistidine: creatinine ratio. Peak and area under the curve concentrations for leucine, branched-chain amino acids, and essential amino acids were greater in WPI compared with BWPH (all p < .05) but with no differences in time to peak concentration. Total oxidation reflected leucine intake (WPI > BWPH > NEAA; p < .01), whereas relative oxidation was greater ( p < .01) in WPI (28.6 ± 3.6%) compared with NEAA (21.3 ± 4.2%), but not BWPH (28.6 ± 8.8%). Leucine retention, a proxy for whole-body protein synthesis, was greater in WPI (185.6 ± 9.5 μmol/kg) compared with BWPH (109.3 ± 14.1 μmol/kg) and NEAA (5.74 ± 0.30 μmol/kg; both p < .01), with BWPH being greater than NEAA ( p < .01). Urinary 3-methylhistidine: creatinine ratio did not differ between conditions. Both WPI and BWPH produced essential aminoacidemia and supported whole-body anabolism after resistance exercise, but a higher intake of BWPH to better approximate the leucine and EAA content of WPI may be needed to produce an equivalent anabolic response.