HL
Hong Li
Author with expertise in Epidemiology and Management of NAFLD
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Atlas of mildly and highly insoluble matrisome driving liver fibrosis

Wen Zhang et al.Sep 2, 2024
The excessive deposition and cross-linking of core matrisome components typically result in abnormal remodeling of the extracellular matrix (ECM), leading to increased liver stiffness and worsening liver fibrosis. Exploring the biochemical properties of the ECM scaffold can deepen our understanding of the pathological mechanisms driving liver fibrosis and potentially facilitate the identification of therapeutic targets. While traditional sodium dodecyl sulfate (SDS)-based liver decellularization followed by proteomics can uncover the matrisome components within the ECM scaffold, it lacks the ability to reveal physicochemical characteristics like solubility. In our present study, using adult mouse liver as an example, we introduced a novel two-step workflow that combines our previously enhanced SDS (ESDS) decellularization with the conventional SDS method, enabling the identification of matrisome members with mild and/or high solubilities. Through this approach, we visualized the atlas of the mildly and highly insoluble matrisome contents in the adult mouse liver, as well as the regulatory network of highly insoluble matrisome that largely governs liver stiffness. Given the strong correlation between increased matrisome insolubility and heightened ECM stiffness, we believe that this methodology holds promise for future research focused on liver stiffness.
0

Caspase-8-mediated CYLD cleavage boots LPS-induced endotoxic shock.

Jianling Liu et al.Apr 4, 2024
Abstract Caspase-8, a pivotal protease intricately involved in various cellular signaling pathways related to cell death and inflammation, has been identified as a contributor to cytokine production during septic shock. However, the mechanisms governing this regulatory role remain enigmatic. In this study, we uncovered that mice harboring a specific mutation in CYLD at its D215 position ( Cyld D 215 A/D 215 A mutant mice), rendering CYLD resistant to caspase8 cleavage, exhibited marked protection against lethal endotoxic shock. Moreover, the removal of Cyld in Caspase8 -/- Mlkl -/- mice restored their sensitivity to endotoxic shock, indicating Caspase8 promotes LPS-induced endotoxic shock by cleaving its substrate CYLD and maintaining CYLD stability confers resistance to endotoxic shock. Mechanistically, CYLD was found to catalyze the removal of LUBAC-mediated M1-linked ubiquitination of NF-kB p65 at K301/K303, thereby suppressing the nuclear translocation and activation of p65 for subsequent cytokines production. Notably, the cleaved N-terminal fragment of CYLD (named CP25) is secreted in a TRIF/Caspase8-dependent manner. Moreover, CP25 can be detected in the serum of septic mice, and its levels show a strong correlation with corresponding serum IL-1β, suggesting its potential utility as an inflammatory biomarker. Overall, these findings highlight the significance of CYLD cleavage as a promising therapeutic target and diagnostic marker for endotoxic shock.
0

Self‐Healing COCu‐Tac Hydrogel Enhances iNSCs Transplantation for Spinal Cord Injury by Promoting Mitophagy via the FKBP52/AKT Pathway

Zhenming Tian et al.Nov 25, 2024
Abstract In the realm of neural regeneration post‐spinal cord injury, hydrogel scaffolds carrying induced neural stem cells (iNSCs) have demonstrated significant potential. However, challenges such as graft rejection and dysfunction caused by mitochondrial damage persist after transplantation, presenting formidable barriers. Tacrolimus, known for its dual role as an immunosuppressant and promoter of neural regeneration, holds the potential for enhancing iNSC transplantation. However, systemic administration of tacrolimus often comes with severe side effects. This study pioneers the development of a self‐healing hydrogel with sustained‐release tacrolimus (COCu‐Tac), tailored specifically for iNSC transplantation after spinal cord injury. This research reveals that the sustained release of tacrolimus enhances axonal growth and improves mitochondrial quality control in iNSCs and neurons. Further analysis shows that tacrolimus targets FKBP52 rather than FKBP51, enhancing mitophagy via the FKBP52/AKT pathway. This advanced system demonstrates significant efficacy in promoting neural regeneration and restoring motor function following spinal cord injury.