YY
Yihui Yuan
Author with expertise in Chemistry of Actinide and Lanthanide Elements
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(20% Open Access)
Cited by:
2,610
h-index:
43
/
i10-index:
95
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Significantly Enhanced Uranium Extraction from Seawater with Mass Produced Fully Amidoximated Nanofiber Adsorbent

Dong Wang et al.Oct 14, 2018
Abstract The oceans contain hundreds of times more uranium than terrestrial ores. Fiber‐based adsorption is considered to be the most promising method to realize the industrialization of uranium extraction from seawater. In this work, a pre‐amidoximation with a blow spinning strategy is developed for mass production of poly(imide dioxime) nanofiber (PIDO NF) adsorbents with many chelating sites, excellent hydrophilicity, 3D porous architecture, and good mechanical properties. The structural evidences from 13 C NMR spectra confirm that the main functional group responsible for the uranyl binding is not “amidoxime” but cyclic “imidedioxime.” The uranium adsorption capacity of the PIDO NF adsorbent reaches 951 mg‐U per g‐Ads in uranium (8 ppm) spiked natural seawater. An average adsorption capacity of 8.7 mg‐U per g‐Ads is obtained after 56 d of exposure in natural seawater via a flow‐through column system. Moreover, up to 98.5% of the adsorbed uranium can be rapidly eluted out and the adsorbent can be regenerated and reused for over eight cycles of adsorption–desorption. This new blow spun PIDO nanofabric shows great potential as a new generation adsorbent for uranium extraction from seawater.
0
Paper
Citation323
0
Save
0

An Ion‐Crosslinked Supramolecular Hydrogel for Ultrahigh and Fast Uranium Recovery from Seawater

Bingjie Yan et al.Jan 29, 2020
Large-scale uranium extraction from seawater is a crucial but challenging part of nuclear power generation. In this study, a new ion-crosslinked supramolecular Zn2+ -poly(amidoxime) (PAO) hydrogel that can super-efficiently adsorb uranium from seawater is explored. By simply mixing two solutions of zinc chloride and PAO, a supramolecular Zn2+ -PAO hydrogel is achieved via the interaction between zinc cations and amidoxime anions. In contrast with existing amidoxime-functionalized hydrogel-based adsorbents having low PAO contents and fiber-based adsorbents with weak hydrophilicity, the PAOs can be directly crosslinked using a small quantity of superhydrophilic zinc ion. Thus, a supramolecular hydrogel is formed, having both a high content of well-dispersed PAOs and good hydrophilicity. Relative to reported adsorbents, this low-cost hydrogel membrane exhibits outstanding uranium adsorption performance, reaching 1188 mg g-1 of MU /Mdry gel in 32 ppm uranium-spiked water. More importantly, after immersion in natural seawater for only 4 weeks, the uranium extraction capacity of the Zn2+ -PAO hydrogel membrane reaches 9.23 mg g-1 of MU /Mdry gel . This work can provide a general strategy for designing a new type of supramolecular hydrogel, crosslinked by various bivalent/multivalent cation-crosslinkers and even many other superhydrophilic supramolecular crosslinkers, for the high-efficient and massive extraction of uranium from seawater.
0
Paper
Citation262
0
Save
1

Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel

Mengwei Chen et al.Mar 27, 2021
Abstract UiO‐66‐NH 2 /black phosphorus quantum dots (MOF/BPQDs) heterojunctions are anchored on the carboxyl cellulose nanofiber (CNF) aerogel with high porosity (>98%) to fabricate high‐efficiency uranium adsorbents (BP@CNF‐MOF). CNF aerogels possess abundant carboxyl groups, which can serve as nucleation centers to in situ synthesize UiO‐66‐NH 2 with smaller crystal size, high mass loading, and good adhesion. BP@CNF‐MOF demonstrates good mechanical flexibility and minimal MOF loss from the CNF aerogel, both of which result from the mutual physical interactions and entanglements of CNFs as well as strong binding interactions between MOF crystals and CNF aerogel. Owing to the excellent heterogeneous photocatalytic activity of MOF/BPQDs, on one hand, marine bacteria can be effectively destroyed by reactive oxygen species (ROS). On the other hand, the photocatalytic U(VI) reduction to insoluble U(IV) could be facilitated, thereby allowing more binding sites on the MOF crystals for further U(VI) adsorption. Consequently, compared with dark conditions, the adsorption efficiency of the light irradiated BP@CNF‐MOF increases by 55.3%, reaching up to 6.77 mg‐U per g‐Ads after 6 weeks of exposure to natural seawater. The intrinsic instability of BPQDs can be overcome by MOF coating layer simultaneously. The strategy applied in this work could also be applicable to other superior MOF crystals.
0

Rational Design of Porous Nanofiber Adsorbent by Blow‐Spinning with Ultrahigh Uranium Recovery Capacity from Seawater

Yihui Yuan et al.Nov 20, 2018
Abstract Highly efficient recovery of uranium from seawater is of great concern because of the growing demand for nuclear energy. The use of amidoxime‐based polymeric fiber adsorbents is considered to be a promising approach because of their relatively high specificity and affinity to uranyl. The surface area, hydrophility, and surface charge of the adsorbent are reported to be critical factors that influence uranium recovery efficiency. Here, a porous amidoxime‐based nanofiber adsorbent (SMON–PAO) that exhibits the highest uranium recovery capacity among the existing fiber adsorbents both in 8 ppm uranium spiked seawater (1089.36 ± 64.31 mg‐U per g‐Ads) and in natural seawater (9.59 ± 0.64 mg‐U per g‐Ads) is prepared by blow spinning. These nanofibers are obtained by compositing polyacrylamidoxime with montmorillonite and exhibit the increased surface area and more exposed functional amidoxime moieties for uranyl adsorption. The residual montmorillonite enhances the hydrophility and reduces the negative surface charge, thereby increasing the contact of the adsorbent with seawater and reducing the charge repulsion between negative amidoxime group and negative uranyl species ([UO 2 (CO 3 ) 3 ] 4− ). The finding of this study indicates that rational design of uranium recovery adsorbents by comprehensive utilizing the key factors that influence uranium recovery performance is a promising approach for developing economically feasible uranium recovery materials.
0
Paper
Citation219
0
Save
0

A Marine‐Inspired Hybrid Sponge for Highly Efficient Uranium Extraction from Seawater

Dong Wang et al.May 3, 2019
Abstract Marine sponges are used as biomonitors of heavy metals contamination in coastal environment as they process large amounts of water and have a high capacity for accumulating heavy metals. Here, inspired by the unique physical and physiological features of marine sponges, a surface engineered synthetic sponge for the highly efficient harvesting of uranium from natural seawater is developed. An ultrathin poly(imide dioxime) (PIDO)/alginate (Alg) interpenetrating polymer network hydrogel layer is uniformly wrapped around the skeleton of a melamine sponge (MS) substrate through a simple dipping–drying–crosslinking process, providing the hybrid MS@PIDO/Alg sponge with excellent uranium adsorption performance and sufficient mechanical strength to withstand the harsh conditions of practical applications. The maximum adsorption capacity reaches 910.98 mg‐U g‐gel ‐1 for the PIDO/Alg hydrogel layer and 291.51 mg‐U g‐sponge ‐1 for the whole hybrid MS@PIDO/Alg sponge in uranium‐spiked natural seawater. The adsorption capacity measured after 56 d of exposure in 5 tons of natural seawater is evaluated to be 5.84 mg‐U g‐gel ‐1 (1.87 mg‐U g‐sponge ‐1 ). This novel approach shows great promise for the mass production of high‐performance sponge adsorbent for uranium recovery from natural seawater and nuclear waste.
0
Paper
Citation212
0
Save
Load More