HK
Haibo Ke
Author with expertise in Mechanical Properties of Metallic Glasses
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
13
(23% Open Access)
Cited by:
5
h-index:
16
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A unique Fe-based soft magnetic alloy and its magnetic softening mechanism

Zhongshi Zhang et al.Jun 18, 2024
Fe-based amorphous alloys with good glass-forming ability (GFA), superior soft magnetic properties, low cost, and a wide heat treatment window have long been pursued in the field of soft magnetic materials due to their importance for mass production and broad applications. In the present study, by strategically adjusting the composition of a low-cost Fe-Si-B-P-Cu-C alloy, we achieved a saturation magnetization (Ms) of approximately 186 emu/g and a coercivity (Hc) of about 6 A/m for the Fe82.5 alloy with a good GFA. Specifically, the limited Cu content and suitable contents of metalloid elements played pivotal roles in enhancing the nuclei barrier and stabilizing the amorphous matrix. This, in turn, facilitated the formation of a finely uniform nanocrystalline structure dispersed within the amorphous matrix, enhancing soft magnetic properties during annealing. Notably, this magnetic softening behavior occurred at a lower heating rate. Structural characterizations revealed that a transient metalloid-rich shell and a stable amorphous matrix contributed to the slow growth of the α-Fe (Si) during prolonged isothermal annealing. This is in contrast to the agglomeration of small nanograins into larger clusters at high heating rates, which enhances the versatility and potential applicability of the alloy. The successful development of this novel nanocrystalline alloy offers promising guidance for addressing the challenges associated with the mass production of soft magnetic materials.
0

Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling

Xiao Liu et al.Nov 9, 2024
The mechanical responses and structure variations of Ta 80 Co 20 nanoscale metallic glass (MG) film samples upon cryogenic thermal cycling (CTC) treatment were studied. The simultaneous improvements of strength and deformation ability bring about a super-high strength of 4.5 GPa and a large plastic strain of about 80% after CTC treatment. The significant increase in inter-element bonding and hardness makes the activation and percolation of shear transformation zones to be more difficult and delays the yielding event, leading to the ultra-high strength. Although the TaCo MG pillar reaches a relaxation energy state, the micro- and nanoscale inhomogeneities remain induced by the local densely packed units along with crystal-like ordering embedded in the matrix. The multi-scale inhomogeneity can effectively hinder the sliding of the shear bands and improve their propagation stability, which is considered to be the origin of its excellent plasticity. Our study reveals another prospect of CTC treatment on nanoscale MG samples of constructing an anomalous inhomogeneous structure and obtaining simultaneous enhancement of strength and plasticity. Graphical abstract
Load More