ML
M. Lafarga
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,389
h-index:
39
/
i10-index:
94
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The CARMENES search for exoplanets around M dwarfs

A. Reiners et al.Nov 17, 2017
The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520--1710nm at a resolution of at least $R > 80,000$, and we measure its RV, H$\alpha$ emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, $Q$, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700--900nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1ms$^{-1}$ in very low mass M dwarfs at longer wavelengths likely requires the use of a 10m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4ms$^{-1}$.
0

Combining Gaia and GRAVITY: Characterising five new directly detected substellar companions

T. Winterhalder et al.Jun 19, 2024
Precise mass constraints are vital for the characterisation of brown dwarfs and exoplanets. Here we present how the combination of data obtained by Gaia and GRAVITY can help enlarge the sample of substellar companions with measured dynamical masses. We show how the Non-Single-Star (NSS) two-body orbit catalogue contained in Gaia DR3 can be used to inform high-angular-resolution follow-up observations with GRAVITY. Applying the method presented in this work to eight Gaia candidate systems, we detect all eight predicted companions, seven of which were previously unknown and five are of a substellar nature. Among the sample is Gaia DR3 2728129004119806464 B, which -- detected at an angular separation of mas from the host -- is the closest substellar companion ever imaged. In combination with the system's distance and the orbital elements, this translates to a semi-major axis of AU . WT 766 B, detected at a greater angular separation, was confirmed to be on an orbit exhibiting an even smaller semi-major axis of AU . The GRAVITY data were then used to break the host-companion mass degeneracy inherent to the Gaia NSS orbit solutions as well as to constrain the orbital solutions of the respective target systems. Knowledge of the companion masses enabled us to further characterise them in terms of their ages, effective temperatures, and radii via the application of evolutionary models. The inferred ages exhibit a distinct bias towards values younger than what is to be expected based on the literature. The results serve as an independent validation of the orbital solutions published in the NSS two-body orbit catalogue and show that the combination of astrometric survey missions and high-angular-resolution direct imaging holds great promise for efficiently increasing the sample of directly imaged companions in the future, especially in the light of Gaia 's upcoming DR4 and the advent of GRAVITY+.
0

The CARMENES search for exoplanets around M dwarfs. Revisiting the GJ 581 multi-planetary system with new Doppler measurements from CARMENES, HARPS, and HIRES

A. Stauffenberg et al.Jun 4, 2024
Context . GJ 581 is a nearby M dwarf known to host a packed multiple planet system composed of two super-Earths and a Neptune-mass planet. We present new orbital analyses of the GJ 581 system, utilizing recent radial velocity (RV) data obtained from the CARMENES spectrograph combined with newly reprocessed archival data from the HARPS and HIRES spectrographs. Aims . Our aim was to analyze the post-discovery spectroscopic data of GJ581, which were obtained with CARMENES. In addition, we used publicly available HIRES and HARPS spectroscopic data to seek evidence of the known and disputed exoplanets in this system. We aimed to investigate the stellar activity of GJ 581 and update the planetary system’s orbital parameters using state-of-the-art numerical models and techniques. Methods . We performed a periodogram analysis of the available precise CARMENES, HIRES, and HARPS RVs and of stellar activity indicators. We conducted detailed orbital analyses by testing various orbital configurations consistent with the RV data. We studied the posterior probability distribution of the parameters fit to the data and we explored the long-term stability and overall orbital dynamics of the GJ 581 system. Results . We refined the orbital parameters of the GJ 581 system using the most precise and complete set of Doppler data available. Consistent with the existing literature, our analysis confirms that the system is unequivocally composed of only three planets detectable in the present data, dismissing the putative planet GJ 581 d as an artifact of stellar activity. Our N -body fit reveals that the system’s inclination is i = 47.0 −13.0 +14.6 deg, which implies that the planets could be up to 30% more massive than their previously reported minimum masses. Furthermore, we report that the GJ 581 system exhibits long-term stability, as indicated by the posterior probability distribution, characterized by secular dynamical interactions without the involvement of mean motion resonances.
0

A possible misaligned orbit for the young planet AU Mic c

Haochuan Yu et al.Nov 26, 2024
ABSTRACT The AU Microscopii planetary system is only 24 Myr old, and its geometry may provide clues about the early dynamical history of planetary systems. Here, we present the first measurement of the Rossiter–McLaughlin effect for the warm sub-Neptune AU Mic c, using two transits observed simultaneously with the European Southern Observatory's (ESO's) Very Large Telescope (VLT)/Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO), CHaracterising ExOPlanet Satellite (CHEOPS), and Next-Generation Transit Survey (NGTS). After correcting for flares and for the magnetic activity of the host star, and accounting for transit-timing variations, we find the sky-projected spin–orbit angle of planet c to be in the range $\lambda _{\mathrm{c}}=67.8_{-49.0}^{+31.7}$ degrees (1$\sigma$). We examine the possibility that planet c is misaligned with respect to the orbit of the inner planet b ($\lambda _{\mathrm{b}}=-2.96_{-10.30}^{+10.44}$), and the equatorial plane of the host star, and discuss scenarios that could explain both this and the planet’s high density, including secular interactions with other bodies in the system or a giant impact. We note that a significantly misaligned orbit for planet c is in some degree of tension with the dynamical stability of the system, and with the fact that we see both planets in transit, though these arguments alone do not preclude such an orbit. Further observations would be highly desirable to constrain the spin–orbit angle of planet c more precisely.