MF
M. Flanner
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(81% Open Access)
Cited by:
20,822
h-index:
61
/
i10-index:
103
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bounding the role of black carbon in the climate system: A scientific assessment

Tami Bond et al.Apr 22, 2013
Abstract Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black‐carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom‐up inventory methods are 7500 Gg yr −1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial‐era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m −2 with 90% uncertainty bounds of (+0.08, +1.27) W m −2 . Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m −2 . Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial‐era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m −2 with 90% uncertainty bounds of +0.17 to +2.1 W m −2 . Thus, there is a very high probability that black carbon emissions, independent of co‐emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m −2 , is the second most important human emission in terms of its climate forcing in the present‐day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short‐lived species that may either cool or warm climate. Climate forcings from co‐emitted species are estimated and used in the framework described herein. When the principal effects of short‐lived co‐emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy‐related sources (fossil fuel and biofuel) have an industrial‐era climate forcing of +0.22 (−0.50 to +1.08) W m −2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short‐lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial‐era climate forcing by all short‐lived species from black‐carbon‐rich sources becomes slightly negative (−0.06 W m −2 with 90% uncertainty bounds of −1.45 to +1.29 W m −2 ). The uncertainties in net climate forcing from black‐carbon‐rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co‐emitted organic carbon. In prioritizing potential black‐carbon mitigation actions, non‐science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near‐term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black‐carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
0
Paper
Citation5,891
0
Save
0

Present‐day climate forcing and response from black carbon in snow

M. Flanner et al.Jun 4, 2007
We apply our Snow, Ice, and Aerosol Radiative (SNICAR) model, coupled to a general circulation model with prognostic carbon aerosol transport, to improve understanding of climate forcing and response from black carbon (BC) in snow. Building on two previous studies, we account for interannually varying biomass burning BC emissions, snow aging, and aerosol scavenging by snow meltwater. We assess uncertainty in forcing estimates from these factors, as well as BC optical properties and snow cover fraction. BC emissions are the largest source of uncertainty, followed by snow aging. The rate of snow aging determines snowpack effective radius ( r e ), which directly controls snow reflectance and the magnitude of albedo change caused by BC. For a reasonable r e range, reflectance reduction from BC varies threefold. Inefficient meltwater scavenging keeps hydrophobic impurities near the surface during melt and enhances forcing. Applying biomass burning BC emission inventories for a strong (1998) and weak (2001) boreal fire year, we estimate global annual mean BC/snow surface radiative forcing from all sources (fossil fuel, biofuel, and biomass burning) of +0.054 (0.007–0.13) and +0.049 (0.007–0.12) W m −2 , respectively. Snow forcing from only fossil fuel + biofuel sources is +0.043 W m −2 (forcing from only fossil fuels is +0.033 W m −2 ), suggesting that the anthropogenic contribution to total forcing is at least 80%. The 1998 global land and sea‐ice snowpack absorbed 0.60 and 0.23 W m −2 , respectively, because of direct BC/snow forcing. The forcing is maximum coincidentally with snowmelt onset, triggering strong snow‐albedo feedback in local springtime. Consequently, the “efficacy” of BC/snow forcing is more than three times greater than forcing by CO 2 . The 1998 and 2001 land snowmelt rates north of 50°N are 28% and 19% greater in the month preceding maximum melt of control simulations without BC in snow. With climate feedbacks, global annual mean 2‐meter air temperature warms 0.15 and 0.10°C, when BC is included in snow, whereas annual arctic warming is 1.61 and 0.50°C. Stronger high‐latitude climate response in 1998 than 2001 is at least partially caused by boreal fires, which account for nearly all of the 35% biomass burning contribution to 1998 arctic forcing. Efficacy was anomalously large in this experiment, however, and more research is required to elucidate the role of boreal fires, which we suggest have maximum arctic BC/snow forcing potential during April–June. Model BC concentrations in snow agree reasonably well ( r = 0.78) with a set of 23 observations from various locations, spanning nearly 4 orders of magnitude. We predict concentrations in excess of 1000 ng g −1 for snow in northeast China, enough to lower snow albedo by more than 0.13. The greatest instantaneous forcing is over the Tibetan Plateau, exceeding 20 W m −2 in some places during spring. These results indicate that snow darkening is an important component of carbon aerosol climate forcing.
0
Paper
Citation1,371
0
Save
0

The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty

David Lawrence et al.Oct 19, 2019
The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and time-evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5.
0
Paper
Citation1,356
0
Save
0

Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model

David Lawrence et al.Jan 1, 2011
The Community Land Model is the land component of the Community Climate System Model.Here, we describe a broad set of model improvements and additions that have been provided through the CLM development community to create CLM4.The model is extended with a carbon-nitrogen (CN) biogeochemical model that is prognostic with respect to vegetation, litter, and soil carbon and nitrogen states and vegetation phenology.An urban canyon model is added and a transient land cover and land use change (LCLUC) capability, including wood harvest, is introduced, enabling study of historic and future LCLUC on energy, water, momentum, carbon, and nitrogen fluxes.The hydrology scheme is modified with a revised numerical solution of the Richards equation and a revised ground evaporation parameterization that accounts for litter and within-canopy stability.The new snow model incorporates the SNow and Ice Aerosol Radiation model (SNICAR) -which includes aerosol deposition, grain-size dependent snow aging, and vertically-resolved snowpack heating -as well as new snow cover and snow burial fraction parameterizations.The thermal and hydrologic properties of organic soil are accounted for and the ground column is extended to ,50-m depth.Several other minor modifications to the land surface types dataset, grass and crop optical properties, surface layer thickness, roughness length and displacement height, and the disposition of snow-capped runoff are also incorporated.The new model exhibits higher snow cover, cooler soil temperatures in organic-rich soils, greater global river discharge, and lower albedos over forests and grasslands, all of which are improvements compared to CLM3.5.When CLM4 is run with CN, the mean biogeophysical simulation is degraded because the vegetation structure is prognostic rather than prescribed, though running in this mode also allows more complex terrestrial interactions with climate and climate change.
0

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5

Xiaohong Liu et al.May 21, 2012
A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM) and black carbon (BC) concentrations between MAM3 and MAM7 are also small (mostly within 10%). The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition, the critical role of cloud properties (e.g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.
0
Paper
Citation963
0
Save
0

Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model

David Lawrence et al.Mar 19, 2011
The Community Land Model is the land component of the Community Climate System Model.Here, we describe a broad set of model improvements and additions that have been provided through the CLM development community to create CLM4.The model is extended with a carbon-nitrogen (CN) biogeochemical model that is prognostic with respect to vegetation, litter, and soil carbon and nitrogen states and vegetation phenology.An urban canyon model is added and a transient land cover and land use change (LCLUC) capability, including wood harvest, is introduced, enabling study of historic and future LCLUC on energy, water, momentum, carbon, and nitrogen fluxes.The hydrology scheme is modified with a revised numerical solution of the Richards equation and a revised ground evaporation parameterization that accounts for litter and within-canopy stability.The new snow model incorporates the SNow and Ice Aerosol Radiation model (SNICAR) -which includes aerosol deposition, grain-size dependent snow aging, and vertically-resolved snowpack heating -as well as new snow cover and snow burial fraction parameterizations.The thermal and hydrologic properties of organic soil are accounted for and the ground column is extended to ,50-m depth.Several other minor modifications to the land surface types dataset, grass and crop optical properties, surface layer thickness, roughness length and displacement height, and the disposition of snow-capped runoff are also incorporated.The new model exhibits higher snow cover, cooler soil temperatures in organic-rich soils, greater global river discharge, and lower albedos over forests and grasslands, all of which are improvements compared to CLM3.5.When CLM4 is run with CN, the mean biogeophysical simulation is degraded because the vegetation structure is prognostic rather than prescribed, though running in this mode also allows more complex terrestrial interactions with climate and climate change.
0

The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution

Jean‐Christophe Golaz et al.Mar 16, 2019
This work documents the first version of the U.S. Department of Energy (DOE) new Energy Exascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission-relevant water cycle questions. Its components include atmosphere and land (110-km grid spacing), ocean and sea ice (60 km in the midlatitudes and 30 km at the equator and poles), and river transport (55 km) models. This base configuration will also serve as a foundation for additional configurations exploring higher horizontal resolution as well as augmented capabilities in the form of biogeochemistry and cryosphere configurations. The performance of E3SMv1 is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima simulations consisting of a long preindustrial control, historical simulations (ensembles of fully coupled and prescribed SSTs) as well as idealized CO2 forcing simulations. The model performs well overall with biases typical of other CMIP-class models, although the simulated Atlantic Meridional Overturning Circulation is weaker than many CMIP-class models. While the E3SMv1 historical ensemble captures the bulk of the observed warming between preindustrial (1850) and present day, the trajectory of the warming diverges from observations in the second half of the twentieth century with a period of delayed warming followed by an excessive warming trend. Using a two-layer energy balance model, we attribute this divergence to the model's strong aerosol-related effective radiative forcing (ERFari+aci = −1.65 W/m2) and high equilibrium climate sensitivity (ECS = 5.3 K).
0
Paper
Citation672
0
Save
Load More