YB
Yash Bhargava
Author with expertise in Astrophysical Studies of Black Holes
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An IXPE-led X-Ray Spectropolarimetric Campaign on the Soft State of Cygnus X-1: X-Ray Polarimetric Evidence for Strong Gravitational Lensing

James Steiner et al.Jul 1, 2024
We present the first X-ray spectropolarimetric results for Cygnus X-1 in its soft state from a campaign of five IXPE observations conducted during 2023 May-June. Companion multiwavelength data during the campaign are likewise shown. The 2-8 keV X-rays exhibit a net polarization degree PD=1.99%+/-0.13% (68% confidence). The polarization signal is found to increase with energy across IXPE's 2-8 keV bandpass. The polarized X-rays exhibit an energy-independent polarization angle of PA=-25.7+/-1.8 deg. East of North (68% confidence). This is consistent with being aligned to Cyg X-1's AU-scale compact radio jet and its pc-scale radio lobes. In comparison to earlier hard-state observations, the soft state exhibits a factor of 2 lower polarization degree, but a similar trend with energy and a similar (also energy-independent) position angle. When scaling by the natural unit of the disk temperature, we find the appearance of a consistent trendline in the polarization degree between soft and hard states. Our favored polarimetric model indicates Cyg X-1's spin is likely high (a* above ~0.96). The substantial X-ray polarization in Cyg X-1's soft state is most readily explained as resulting from a large portion of X-rays emitted from the disk returning and reflecting off the disk surface, generating a high polarization degree and a polarization direction parallel to the black hole spin axis and radio jet. In IXPE's bandpass, the polarization signal is dominated by the returning reflection emission. This constitutes polarimetric evidence for strong gravitational lensing of X-rays close to the black hole.
0

Probing the origin of the extended flaring branch of Z-type X-ray binaries GX 340+0 and GX 5-1 using AstroSat

Tanmoy Dutta et al.Nov 15, 2024
Abstract ‘Z’ type neutron star low-mass X-ray binaries typically show a ‘Z’-like three-branched track in their hardness intensity diagram. However, a few such ‘Z’ sources show an additional branch known as the extended flaring branch (EFB). EFB has been poorly studied, and its origin is not known. It is thought to be an extension of the flaring branch (FB) or associated with Fe Kα complex or an additional continuum due to the radiative recombination continuum (RRC) process. Using AstroSat observations, we have detected the EFB from two ‘Z’ sources, GX 340+0 and GX 5–1, and performed a broadband spectral analysis in the 0.5–22 keV energy range. During EFB, both sources show the presence of a significant RRC component with absorption edges at $7.91^{+0.16}_{-0.15}$ keV and $8.10^{+0.16}_{-0.17}$ keV, respectively along with blackbody radiation and thermal Comptonisation. No signature of RRC was detected during the FB, which is adjoint to the EFB. No Fe Kα complex is detected. Interestingly, inside EFB dips of GX 5-1, for the first time, we have detected flaring events of 30–60s, which can be modelled with a single blackbody radiation. During the FB to EFB transition, an increase in the blackbody radius by a factor of 1.5–2 is observed in both sources. Our analysis strongly suggests that EFB is not an extension of FB or caused by the Fe Kα complex. Rather, it is caused by a sudden expansion of the hot, thermalised boundary layer and subsequent rapid cooling.
0

Rapid Mid-Infrared Spectral-Timing with JWST: I. GRS 1915+105 during a MIR–bright and X-ray–obscured state

P. Gandhi et al.Jan 9, 2025
Abstract We present mid-infrared (MIR) spectral-timing measurements of the prototypical Galactic microquasar GRS 1915+105. The source was observed with the Mid-Infrared Instrument (MIRI) onboard JWST in June 2023 at a MIR luminosity LMIR ≈ 1036 erg s−1 exceeding past IR levels by about a factor of 10. In contrast, the X-ray flux is much fainter than the historical average, in the source’s now–persistent ‘obscured’ state. The MIRI low-resolution spectrum shows a plethora of emission lines, the strongest of which are consistent with recombination in the hydrogen Pfund (Pf) series and higher. Low amplitude (∼ 1%) but highly significant peak-to-peak photometric variability is found on timescales of ∼ 1,000 s. The brightest Pf (6–5) emission line lags the continuum. Though difficult to constrain accurately, this lag is commensurate with light-travel timescales across the outer accretion disc or with expected recombination timescales inferred from emission line diagnostics. Using the emission line as a bolometric indicator suggests a moderate (∼ 5–30 % Eddington) intrinsic accretion rate. Multiwavelength monitoring shows that JWST caught the source close in-time to unprecedentedly bright MIR and radio long-term flaring. Assuming a thermal bremsstrahlung origin for the MIRI continuum suggests an unsustainably high mass-loss rate during this time unless the wind remains bound, though other possible origins cannot be ruled out. PAH features previously detected with Spitzer are now less clear in the MIRI data, arguing for possible destruction of dust in the interim. These results provide a preview of new parameter space for exploring MIR spectral-timing in XRBs and other variable cosmic sources on rapid timescales.