XL
Xiaojie Li
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
2
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Band Gap Engineering of Silver Phosphate via Efficient Occlusion of Diblock Copolymer Nanoparticles

Xiaojie Li et al.May 30, 2024
Band gap engineering of a semiconductor in a straightforward and efficient manner is highly desirable, but it remains technically challenging. Herein, we demonstrate a powerful nanoparticle occlusion strategy that enables the band gap of silver phosphate (Ag3PO4) crystals to be readily tailored. Specifically, a series of diblock copolymer nanoparticles of varying morphologies is prepared by polymerization-induced self-assembly (PISA) and subsequently used as a particulate additive during the crystallization of Ag3PO4. Remarkably, these copolymer nanoparticles can be efficiently occluded within Ag3PO4 single crystals, forming organic/inorganic nanocomposite semiconductors whose optical band gap is tunable, depending on the extent of copolymer occlusion. Furthermore, these copolymer nanoparticles can act as "Trojan horses" to incorporate Pd nanoparticles into Ag3PO4, leading to an enhanced photocatalytic degradation of tetracycline under visible-light irradiation. This study provides a brand-new strategy to regulate the band gap of semiconductors, and in principle, it could enable the rational preparation of a wide range of nanocomposite semiconductor materials with controlled properties.
0

Modification of α-Fe2O3 Nanoparticles with Carbon Layer for Robust Photo-Fenton Catalytic Degradation of Methyl Orange

Muhammad Qasim et al.Jun 20, 2024
The degradation of organic dyes poses a significant challenge in achieving sustainable environmental solutions, given their extensive usage across various industries. Iron oxide (Fe2O3) nanoparticles are studied as a reliable technique for remediating dye degradation. The objective of this research is to improve methods of nanomaterial-based environmental remediation. The solvothermal technique is used to synthesize carbon-modified Fe2O3 nanoparticles that exhibit the capability to modify their size morphology and increase reactivity, and stability for MO photodegradation. Their inherent qualities render them highly advantageous for biomedical applications, energy storage, environmental remediation, and catalysis. The mean crystallite size of the modified Fe2O3 nanoparticles is approximately 20 nm. These photocatalysts are tested for their ability to degrade methyl orange (MO) under Visible light radiation and in presence of hydrogen peroxide reagent. The optimal degradation efficiency (97%) is achieved with Fe2O3@C in the presence of H2O2 by meticulously controlling the pH, irradiation time, and photocatalyst dosage. The enhanced photocatalytic activity of the Fe2O3@C nanoparticles, compared to pure Fe2O3, is attributed to the conductive carbon layer, which significantly reduces electron-hole recombination rates. To summarize, Fe2O3@C nanoparticles not only offer a promising technique for the degradation of MO dye pollutants but also have an advantage for environmental remediation due to their increased stability and reactivity.
0

Hierarchical NiCo2Se4 Arrays Composed of Atomically Thin Nanosheets: Simultaneous Improvements in Thermodynamics and Kinetics for Electrocatalytic Water Splitting in Neutral Media

Hongyu Chen et al.Jun 18, 2024
Abstract The inefficiency of electrocatalysts for water splitting in neutral media stems from a comprehensive impact of poor intrinsic activity, a limited number of active sites, and inadequate mass transport. Herein, hierarchical ultrathin NiCo 2 Se 4 nanosheets are synthesized by the selenization of NiCo 2 O 4 porous nanoneedles. Theoretical and experimental investigations reveal that the intrinsic hydrogen evolution reaction (HER) activity primarily originate from the NiCo 2 Se 4 , whereas the high oxygen evolution reaction (OER) performance is related to the NiCoOOH due to the structural reconstruction. The abundant Se and O vacancies introduced by atomically thin nanostructure modulate the electronic structure of NiCo 2 Se 4 and NiCoOOH, thereby improving the intrinsic HER and OER activities, respectively. COMSOL simulation demonstrate the edges of extended nanosheets from the main body significantly promote the charge aggregation, boosting the reduction and oxidation current during HER/OER process. This charge aggregation effect notably exceeds the tip effect for the nanoneedle, highlighting the unique advantage of the hierarchical nanosheet structure. Benefiting from abundant vacancies and unique nanostructure, the hierarchical ultrathin nanosheet simultaneously improve the thermodynamics and kinetics of the electrocatalyst. The optimized samples display an overpotential of 92 mV for HER and 214 mV for OER at 100 mA cm −2 , significantly surpassing the performance of currently reported HER/OER catalysts in neutral media.
0

Dual Nanofillers Reinforced Polymer‐Inorganic Nanocomposite Film with Enhanced Mechanical Properties

Bodong Peng et al.Sep 6, 2024
Abstract Simultaneously improving the strength and toughness of polymer‐inorganic nanocomposites is highly desirable but remains technically challenging. Herein, a simple yet effective pathway to prepare polymer‐inorganic nanocomposite films that exhibit excellent mechanical properties due to their unique composition and structure is demonstrated. Specifically, a series of poly(methacrylic acid) x ‐ block ‐poly(benzyl methacrylate) y diblock copolymer nano‐objects with differing dimensions and morphologies is prepared by polymerization‐induced self‐assembly (PISA) mediated by reversible addition‐fragmentation chain transfer polymerization (RAFT). Such copolymer nano‐objects and ultrasmall calcium phosphate oligomers (CPOs) are used as dual fillers for the preparation of polymer‐inorganic composite films using sodium carboxymethyl cellulose (CMC) as a matrix. Impressively, the strength and toughness of such composite films are substantially reinforced as high as up to 202.5 ± 14.8 MPa and 62.3 ± 7.9 MJ m −3 , respectively. Owing to the intimate interaction between the polymer‐inorganic interphases at multiple scales, their mechanical performances are superior to most conventional polymer films and other nanocomposite films. This study demonstrates the combination of polymeric fillers and inorganic fillers to reinforce the mechanical properties of the resultant composite films, providing new insights into the design rules for the construction of novel hybrid films with excellent mechanical performances.