AK
Anatoly Klypin
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(96% Open Access)
Cited by:
14,918
h-index:
71
/
i10-index:
155
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Profiles of dark haloes: evolution, scatter and environment

James Bullock et al.Mar 1, 2001
We study dark matter halo density profiles in a high-resolution N-body simulation of a ΛCDM cosmology. Our statistical sample contains ∼5000 haloes in the range 1011−1014 h−1 M⊙, and the resolution allows a study of subhaloes inside host haloes. The profiles are parametrized by an NFW form with two parameters, an inner radius rs and a virial radius Rvir, and we define the halo concentration cvir=Rvirrs. First, we find that, for a given halo mass, the redshift dependence of the median concentration is cvir∝(1+z)−1. This corresponds to rs(z)∼constant, and is contrary to earlier suspicions that cvir does not vary much with redshift. The implications are that high-redshift galaxies are predicted to be more extended and dimmer than expected before. Secondly, we find that the scatter in halo profiles is large, with a 1σ Δ(log cvir)=0.18 at a given mass, corresponding to a scatter in maximum rotation velocities of ΔVmaxVmax=0.12. We discuss implications for modelling the Tully—Fisher relation, which has a smaller reported intrinsic scatter. Thirdly, subhaloes and haloes in dense environments tend to be more concentrated than isolated haloes, and show a larger scatter. These results suggest that cvir is an essential parameter for the theory of galaxy modelling, and we briefly discuss implications for the universality of the Tully—Fisher relation, the formation of low surface brightness galaxies, and the origin of the Hubble sequence. We present an improved analytic treatment of halo formation that fits the measured relations between halo parameters and their redshift dependence, and can thus serve semi-analytic studies of galaxy formation.
0

Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model

Oleg Gnedin et al.Nov 19, 2004
The cooling of gas in the centers of dark matter halos is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. In contrast, halos in the hierarchical structure formation scenarios grow via multiple violent mergers and accretion along filaments, and particle orbits in the halos are highly eccentric. We study the effects of the cooling of gas in the inner regions of halos using high-resolution cosmological simulations that include gas dynamics, radiative cooling, and star formation. We find that the dissipation of gas indeed increases the density of dark matter and steepens its radial profile in the inner regions of halos compared to the case without cooling. For the first time, we test the adiabatic contraction model in cosmological simulations and find that the standard model systematically overpredicts the increase of dark matter density in the inner 5% of the virial radius. We show that the model can be improved by a simple modification of the assumed invariant from M(r)r to M()r, where r and are the current and orbit-averaged particle positions. This modification approximately accounts for orbital eccentricities of particles and reproduces simulation profiles to within 10%-20%. We present analytical fitting functions that accurately describe the transformation of the dark matter profile in the modified model and can be used for interpretation of observations.
0

MultiDark simulations: the story of dark matter halo concentrations and density profiles

Anatoly Klypin et al.Feb 5, 2016
Predicting structural properties of dark matter haloes is one of the fundamental goals of modern cosmology. We use the suite of MultiDark cosmological simulations to study the evolution of dark matter halo density profiles, concentrations, and velocity anisotropies. We find that in order to understand the structure of dark matter haloes and to make 1–2 per cent accurate predictions for density profiles, one needs to realize that halo concentration is more complex than the ratio of the virial radius to the core radius in the Navarro–Frenk–White (NFW) profile. For massive haloes, the average density profile is far from the NFW shape and the concentration is defined by both the core radius and the shape parameter α in the Einasto approximation. We show that haloes progress through three stages of evolution. They start as rare density peaks and experience fast and nearly radial infall that brings mass closer to the centre, producing a highly concentrated halo. Here, the halo concentration increases with increasing halo mass and the concentration is defined by the α parameter with a nearly constant core radius. Later haloes slide into the plateau regime where the accretion becomes less radial, but frequent mergers still affect even the central region. At this stage, the concentration does not depend on halo mass. Once the rate of accretion and merging slows down, haloes move into the domain of declining concentration–mass relation because new accretion piles up mass close to the virial radius while the core radius is staying constant. Accurate analytical fits are provided.
0
Paper
Citation795
0
Save
0

Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality

Joel Brownstein et al.Nov 17, 2008
We measure the mass function of dark matter halos in a large set of collisionless cosmological simulations of flat LCDM cosmology and investigate its evolution at z<~2. Halos are identified as isolated density peaks, and their masses are measured within a series of radii enclosing specific overdensities. We argue that these spherical overdensity masses are more directly linked to cluster observables than masses measured using the friends-of-friends algorithm (FOF), and are therefore preferable for accurate forecasts of halo abundances. Our simulation set allows us to calibrate the mass function at z=0 for virial masses in the range 10^{11} Msol/h < M < 10^{15} Msol/h, to <~ 5%. We derive fitting functions for the halo mass function in this mass range for a wide range of overdensities, both at z=0 and earlier epochs. In addition to these formulae, which improve on previous approximations by 10-20%, our main finding is that the mass function cannot be represented by a universal fitting function at this level of accuracy. The amplitude of the "universal" function decreases monotonically by ~20-50%, depending on the mass definition, from z=0 to 2.5. We also find evidence for redshift evolution in the overall shape of the mass function.
0

ΛCDM‐based Models for the Milky Way and M31. I. Dynamical Models

Anatoly Klypin et al.Jul 10, 2002
We apply standard disk formation theory with adiabatic contraction within cuspy halo models predicted by the standard cold dark matter (ΛCDM) cosmology. The resulting models are confronted with the broad range of observational data available for the Milky Way and M31 galaxies. We find that there is a narrow range of parameters that can satisfy the observational constraints, but within this range, the models score remarkably well. Our favored models have virial masses of 1012 and 1.6 × 1012 M☉ for the Galaxy and for M31, respectively, average spin parameters λ ≈ 0.03-0.05, and concentrations Cvir = 10-17, typical for halos of this mass in the standard ΛCDM cosmology. The models require neither dark matter modifications nor flat cores to fit the observational data. We explore two types of models, with and without the exchange of angular momentum between the dark matter and the baryons. The models without exchange give reasonable rotation curves, fulfill constraints in the solar neighborhood, and satisfy constraints at larger radii, but they may be problematic for fast rotating central bars. We explore models in which the baryons experience additional contraction due to loss of angular momentum to the surrounding dark matter. These models produce similar global properties, but the dark matter is only a 25% of the total mass in the central 3 kpc region, allowing a fast rotating bar to persist. According to preliminary calculations, our model galaxies probably have sufficient baryonic mass in the central ~3.5 kpc to reproduce recent observational values of the optical depth to microlensing events toward the Galactic center. Our dynamical models unequivocally require that about 50% of all the gas inside the virial radius must not be in the disk or in the bulge, a result that is obtained naturally in standard semianalytic models. Assuming that the Milky Way is "typical," we investigate whether the range of virial masses allowed by our dynamical models is compatible with constraints from the galaxy luminosity function. We find that if the Milky Way has a luminosity MK = -24.0, then these constraints are satisfied, but if it is more luminous (as expected if it lies on the Tully-Fisher relation), then the predicted space density is larger than the observed space density of galaxies of the corresponding luminosity by a factor of 1.5-2. We conclude that observed rotation curves and dynamical properties of "normal" spiral galaxies appear to be consistent with standard ΛCDM.
0

Adaptive Refinement Tree: A New High‐ResolutionN‐Body Code for Cosmological Simulations

Andrey Kravtsov et al.Jul 1, 1997
We present a new high-resolution N-body algorithm for cosmological simulations. The algorithm employs a traditional particle-mesh technique on a cubic grid and successive multilevel relaxations on the finer meshes, introduced recursively in a fully adaptive manner in the regions where the density exceeds a predefined threshold. The mesh is generated to effectively match an arbitrary geometry of the underlying density field -- a property particularly important for cosmological simulations. In a simulation the mesh structure is not created at every time step but is properly adjusted to the evolving particle distribution. The algorithm is fast and effectively parallel. We present a detailed description of the methodology, implementation, and tests of the code. We further use the code to study the structure of dark matter halos in high-resolution (2/h kpc) simulations of standard CDM (Omega=1, h=0.5, sigma_8=0.63) and LCDM (Omega_Lambda=1-Omega_0=0.7, h=0.7, sigma_8=1.0) models. We find that halo density profiles in both CDM and LCDM models are well fitted by the analytical model presented recently by Navarro et al., which predicts a singular [$ρ(r)\propto r^{-1}$] behavior of the halo density profiles at small radii. We therefore conclude that halos formed in the $Λ$CDM model have structure similar to CDM halos and thus cannot explain the dynamics of the central parts of dwarf spiral galaxies, as inferred from the galaxies' rotation curves.
0

The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem

Andrey Kravtsov et al.Jul 9, 2004
Hierarchical cold dark matter (CDM) models predict that Milky Way-sized halos contain several hundred dense low-mass dark matter satellites (the substructure), an order of magnitude more than the number of observed satellites in the Local Group. If the CDM paradigm is correct, this prediction implies that the Milky Way and Andromeda are filled with numerous dark halos. To understand why these halos failed to form stars and become galaxies, we need to understand their history. We analyze the dynamical evolution of the substructure halos in a high-resolution cosmological simulation of Milky Way-sized halos in the ΛCDM cosmology. We find that about 10% of the substructure halos with the present masses ≲108-109 M☉ (circular velocities Vm ≲ 30 km s-1) had considerably larger masses and circular velocities when they formed at redshifts z ≳ 2. After the initial period of mass accretion in isolation, these objects experience dramatic mass loss because of tidal stripping. Our analysis shows that strong tidal interaction is often caused by actively merging massive neighboring halos, even before the satellites are accreted by their host halo. These results can explain how the smallest dwarf spheroidal galaxies of the Local Group were able to build up a sizable stellar mass in their seemingly shallow potential wells. We propose a new model in which all the luminous dwarf spheroidals in the Local Group are descendants of the relatively massive (≳109 M☉) high-redshift systems, in which the gas could cool efficiently by atomic line emission, and which were not significantly affected by the extragalactic ultraviolet radiation. We present a simple galaxy formation model based on the trajectories extracted from the simulation, which accounts for the bursts of star formation after strong tidal shocks and the inefficiency of gas cooling in halos with virial temperatures Tvir ≲ 104 K. Our model reproduces the abundance, spatial distribution, and morphological segregation of the observed Galactic satellites. The results are insensitive to the redshift of reionization.
0

GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY

Peter Behroozi et al.Dec 28, 2012
We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across timesteps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees . Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/ .
0

DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION

Anatoly Klypin et al.Oct 4, 2011
We present the first results from the new Bolshoi N-body cosmological LCDM simulation that uses cosmological parameters favored by current observations. The Bolshoi simulation was done in a volume 250Mpc on a side using 8billion particles with mass and force resolution adequate to follow subhalos down to a completeness limit of Vcirc=50km/ s circular velocity. Using excellent statistics of halos and subhalos (10M at every moment and 50M over the whole history) we present accurate approximations for statistics such as the halo mass function, the concentrations for distinct halos and subhalos, abundance of halos as function of their circular velocity, the abundance and the spatial distribution of subhalos. We find that at high redshifts the concentration falls to a minimum of about 3.8 and then rises slightly for higher values of halo mass. We find that while the Sheth-Tormen approximation for the mass function of halos found by spherical overdensity is accurate at low redshifts, it over-predicts the abundance of halos by nearly an order of magnitude by z=10. We find that the number of subhalos scales with the circular velocity of the host halo as Vhost**0.5, and that subhalos have nearly the same radial distribution as dark matter particles at radii 0.3-2 times the host halo virial radius. The subhalo velocity function n(>V) behaves as V**(-3). We give normalization of this relation for different masses and redshifts. Finally, we use an abundance-matching procedure to assign r-band luminosities to dark matter halos as a function of halo Vcirc, and find that the luminosity-velocity relation is in remarkably good agreement with the observed Tully-Fisher relation for galaxies in the range 50-200km/s.
Load More