LG
Lianru Gao
Author with expertise in Hyperspectral Image Analysis and Classification
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(33% Open Access)
Cited by:
2,506
h-index:
48
/
i10-index:
139
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers

Danfeng Hong et al.Nov 25, 2021
Hyperspectral (HS) images are characterized by approximately contiguous spectral information, enabling the fine identification of materials by capturing subtle spectral discrepancies. Owing to their excellent locally contextual modeling ability, convolutional neural networks (CNNs) have been proven to be a powerful feature extractor in HS image classification. However, CNNs fail to mine and represent the sequence attributes of spectral signatures well due to the limitations of their inherent network backbone. To solve this issue, we rethink HS image classification from a sequential perspective with transformers, and propose a novel backbone network called \ul{SpectralFormer}. Beyond band-wise representations in classic transformers, SpectralFormer is capable of learning spectrally local sequence information from neighboring bands of HS images, yielding group-wise spectral embeddings. More significantly, to reduce the possibility of losing valuable information in the layer-wise propagation process, we devise a cross-layer skip connection to convey memory-like components from shallow to deep layers by adaptively learning to fuse "soft" residuals across layers. It is worth noting that the proposed SpectralFormer is a highly flexible backbone network, which can be applicable to both pixel- and patch-wise inputs. We evaluate the classification performance of the proposed SpectralFormer on three HS datasets by conducting extensive experiments, showing the superiority over classic transformers and achieving a significant improvement in comparison with state-of-the-art backbone networks. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_SpectralFormer for the sake of reproducibility.
0

Graph Convolutional Networks for Hyperspectral Image Classification

Danfeng Hong et al.Aug 18, 2020
To read the final version please go to IEEE TGRS on IEEE Xplore. Convolutional neural networks (CNNs) have been attracting increasing attention in hyperspectral (HS) image classification, owing to their ability to capture spatial-spectral feature representations. Nevertheless, their ability in modeling relations between samples remains limited. Beyond the limitations of grid sampling, graph convolutional networks (GCNs) have been recently proposed and successfully applied in irregular (or non-grid) data representation and analysis. In this paper, we thoroughly investigate CNNs and GCNs (qualitatively and quantitatively) in terms of HS image classification. Due to the construction of the adjacency matrix on all the data, traditional GCNs usually suffer from a huge computational cost, particularly in large-scale remote sensing (RS) problems. To this end, we develop a new mini-batch GCN (called miniGCN hereinafter) which allows to train large-scale GCNs in a mini-batch fashion. More significantly, our miniGCN is capable of inferring out-of-sample data without re-training networks and improving classification performance. Furthermore, as CNNs and GCNs can extract different types of HS features, an intuitive solution to break the performance bottleneck of a single model is to fuse them. Since miniGCNs can perform batch-wise network training (enabling the combination of CNNs and GCNs) we explore three fusion strategies: additive fusion, element-wise multiplicative fusion, and concatenation fusion to measure the obtained performance gain. Extensive experiments, conducted on three HS datasets, demonstrate the advantages of miniGCNs over GCNs and the superiority of the tested fusion strategies with regards to the single CNN or GCN models. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_GCN for the sake of reproducibility.
0
Paper
Citation241
0
Save
0

Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN

Mengmeng Zhang et al.Sep 18, 2018
Multisensor fusion is of great importance in Earth observation related applications. For instance, hyperspectral images (HSIs) provide wealthy spectral information while light detection and ranging (LiDAR) data provide elevation information, and using HSI and LiDAR data together can achieve better classification performance. In this paper, an unsupervised feature extraction framework, named as patch-to-patch convolutional neural network (PToP CNN), is proposed for collaborative classification of hyperspectral and LiDAR data. More specific, a three-tower PToP mapping is first developed to seek an accurate representation from HSI to LiDAR data, aiming at merging multiscale features between two different sources. Then, by integrating hidden layers of the designed PToP CNN, extracted features are expected to possess deeply fused characteristics. Accordingly, features from different hidden layers are concatenated into a stacked vector and fed into three fully connected layers. To verify the effectiveness of the proposed classification framework, experiments are executed on two benchmark remote sensing data sets. The experimental results demonstrate that the proposed method provides superior performance when compared with some state-of-the-art classifiers, such as two-branch CNN and context CNN.
0
Citation232
0
Save
0

Weighted-RXD and Linear Filter-Based RXD: Improving Background Statistics Estimation for Anomaly Detection in Hyperspectral Imagery

Qiandong Guo et al.Apr 2, 2014
Anomaly detection is an active topic in hyperspectral imaging, with many practical applications. Reed-Xiaoli detector (RXD), a widely used method for anomaly detection, uses the covariance matrix and mean vector to represent background signals, assuming that the background information adjusts to a multivariate normal distribution. However, in general, real images present very complex backgrounds. As a result, in many situations, the background information cannot be properly modeled. An important reason is that that background samples often contain also anomalous pixels and noise, which lead to a high false alarm rate. Therefore, the characterization of the background is essential for successful anomaly detection. In this paper, we develop two novel approaches: weighted-RXD (W-RXD) and linear filter-based RXD (LF-RXD) aimed at improving background in RXD-based anomaly detection. By reducing the weight of the anomalous pixels or noise signals and increasing the weight of the background samples, W-RXD can provide better estimations of the background information. In turn, LF-RXD uses the probability of each pixel as background to filter wrong anomalous or noisy instances. Our experimental results, intended to analyze the performance of the newly developed anomaly detectors, indicate that the proposed approaches achieve good performance when compared with other classic approaches for anomaly detection in the literature.
0

More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification

Danfeng Hong et al.Aug 24, 2020
Classification and identification of the materials lying over or beneath the Earth's surface have long been a fundamental but challenging research topic in geoscience and remote sensing (RS) and have garnered a growing concern owing to the recent advancements of deep learning techniques. Although deep networks have been successfully applied in single-modality-dominated classification tasks, yet their performance inevitably meets the bottleneck in complex scenes that need to be finely classified, due to the limitation of information diversity. In this work, we provide a baseline solution to the aforementioned difficulty by developing a general multimodal deep learning (MDL) framework. In particular, we also investigate a special case of multi-modality learning (MML) -- cross-modality learning (CML) that exists widely in RS image classification applications. By focusing on "what", "where", and "how" to fuse, we show different fusion strategies as well as how to train deep networks and build the network architecture. Specifically, five fusion architectures are introduced and developed, further being unified in our MDL framework. More significantly, our framework is not only limited to pixel-wise classification tasks but also applicable to spatial information modeling with convolutional neural networks (CNNs). To validate the effectiveness and superiority of the MDL framework, extensive experiments related to the settings of MML and CML are conducted on two different multimodal RS datasets. Furthermore, the codes and datasets will be available at https://github.com/danfenghong/IEEE_TGRS_MDL-RS, contributing to the RS community.
0

BockNet: Blind-Block Reconstruction Network With a Guard Window for Hyperspectral Anomaly Detection

Degang Wang et al.Jan 1, 2023
Hyperspectral anomaly detection (HAD) aims to identify anomalous targets that deviate from the surrounding background in unlabeled hyperspectral images (HSIs). Most existing deep networks that exploit reconstruction errors to detect anomalies are prone to fit anomalous pixels, thus yielding small reconstruction errors for anomalies, which is not favorable for separating targets from HSIs. In order to achieve a superior background reconstruction network for HAD purposes, this paper proposes a self-supervised blind-block network (termed BockNet) with a guard window. BockNet creates a blind-block (guard window) in the center of the network's receptive field, rendering it unable to see the information inside the guard window when reconstructing the central pixel. This process seamlessly embeds a sliding dual-window model into our BockNet, in which the inner window is the guard window and the outer window is the receptive field outside the guard window. Naturally, BockNet utilizes only the outer window information to predict/reconstruct the central pixel of the perceptive field. During the reconstruction of pixels inside anomalous targets of varying sizes, the targets typically fall into the guard window, weakening the contribution of anomalies to the reconstruction results so that those reconstructed pixels converge to the background distribution of the outer window area. Accordingly, the reconstructed HSI can be deemed as a pure background HSI, and the reconstruction error of anomalous pixels will be further enlarged, thus improving the discrimination ability of the BockNet model for anomalies. Extensive experiments on four datasets illustrate the competitive and satisfactory performance of our BockNet compared to other state-of-the-art detectors.
0
Paper
Citation208
0
Save
0

Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing

Danfeng Hong et al.Apr 6, 2021
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these HS products, mainly by seasoned experts. However, with an ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges for reducing the burden of manual labor and improving efficiency. For this reason, it is urgent that more intelligent and automatic approaches for various HS RS applications be developed. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications; however, their ability to handle complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher-dimensional HS signals. Compared to convex models, nonconvex modeling, which is capable of characterizing more complex real scenes and providing model interpretability technically and theoretically, has proven to be a feasible solution that reduces the gap between challenging HS vision tasks and currently advanced intelligent data processing models.
0

Progress and Challenges in Intelligent Remote Sensing Satellite Systems

Bing Zhang et al.Jan 1, 2022
Due to advances in remote sensing satellite imaging and image processing technologies and their wide applications, intelligent remote sensing satellites are facing an opportunity for rapid development. The key technologies, standards, and laws of intelligent remote sensing satellites are also experiencing a series of new challenges. Novel concepts and key technologies in the intelligent hyperspectral remote sensing satellite system have been proposed since 2011. The aim of these intelligent remote sensing satellites is to provide real-time, accurate, and personalized remote sensing information services. This article reviews the current developments in new-generation intelligent remote sensing satellite systems, with a focus on intelligent remote sensing satellite platforms, imaging payloads, onboard processing systems, and other key technological chains. The technological breakthroughs and current defects of intelligence-oriented designs are also analyzed. Intelligent remote sensing satellites collect personalized remote sensing data and information, with real-time data features and information interaction between remote sensing satellites or between satellites and the ground. Such developments will expand the use of remote sensing applications beyond government departments and industrial users to a massive number of individual users. However, this extension faces challenges regarding privacy protection, societal values, and laws regarding the sharing and distribution of data and information.
0
Paper
Citation190
0
Save
Load More