RG
R.G.M. Goede
Author with expertise in Soil Carbon Dynamics and Nutrient Cycling in Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1,714
h-index:
46
/
i10-index:
92
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Soil nematode abundance and functional group composition at a global scale

Johan Hoogen et al.Jul 24, 2019
Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios. High-resolution spatial maps of the global abundance of soil nematodes and the composition of functional groups show that soil nematodes are found in higher abundances in sub-Arctic regions, than in temperate or tropical regions.
0
Paper
Citation776
0
Save
0

Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe

Giulia Bongiorno et al.Dec 12, 2018
Soil quality is defined as the capacity of the soil to perform multiple functions, and can be assessed by measuring soil chemical, physical and biological parameters. Among soil parameters, labile organic carbon is considered to have a primary role in many soil functions related to productivity and environmental resilience. Our study aimed at assessing the suitability of different labile carbon fractions, namely dissolved organic carbon (DOC), hydrophilic DOC (Hy-DOC), permanganate oxidizable carbon (POXC, also referred to as Active Carbon), hot water extractable carbon (HWEC) and particulate organic matter carbon (POMC) as soil quality indicators in agricultural systems. To do so, we tested their sensitivity to two agricultural management factors (tillage and organic matter input) in 10 European long-term field experiments (LTEs), and we assessed the correlation of the different labile carbon fractions with physical, chemical and biological soil quality indicators linked to soil functions. We found that reduced tillage and high organic matter input increase concentrations of labile carbon fractions in soil compared to conventional tillage and low organic matter addition, respectively. POXC and POMC were the most sensitive fractions to both tillage and fertilization across the 10 European LTEs. In addition, POXC was the labile carbon fraction most positively correlated with soil chemical (total organic carbon, total nitrogen, and cation exchange capacity), physical (water stable aggregates, water holding capacity, bulk density) and biological soil quality indicators (microbial biomass carbon and nitrogen, and soil respiration). We conclude that POXC represents a labile carbon fraction sensitive to soil management and that is the most informative about total soil organic matter, nutrients, soil structure, and microbial pools and activity, parameters commonly used as indicators of various soil functions, such as C sequestration, nutrient cycling, soil structure formation and soil as a habitat for biodiversity. Moreover, POXC measurement is relatively cheap, fast and easy. Therefore, we suggest measuring POXC as the labile carbon fraction in soil quality assessment schemes in addition to other valuable soil quality indicators.
0

Soil biota community structure and abundance under agricultural intensification and extensification

Maria Postma-Blaauw et al.Feb 1, 2010
Understanding the impacts of agricultural intensification and extensification on soil biota communities is useful in order to preserve and restore biological diversity in agricultural soils and enhance the role of soil biota in agroecosystem functioning. Over four consecutive years, we investigated the effects of agricultural intensification and extensification (including conversion of grassland to arable land and vice versa, increased and decreased levels of mineral fertilization, and monoculture compared to crop rotation) on major soil biota group abundances and functional diversity. We integrated and compared effects across taxonomic levels to identify sensitive species groups. Conversion of grassland to arable land negatively affected both abundances and functional diversity of soil biota. Further intensification of the cropping system by increased fertilization and reduced crop diversity exerted smaller and differential effects on different soil biota groups. Agricultural intensification affected abundances of taxonomic groups with larger body size (earthworms, enchytraeids, microarthropods, and nematodes) more negatively than smaller‐sized taxonomic groups (protozoans, bacteria, and fungi). Also functional group diversity and composition were more negatively affected in larger‐sized soil biota (earthworms, predatory mites) than in smaller‐sized soil biota (nematodes). Furthermore, larger soil biota appeared to be primarily affected by short‐term consequences of conversion (disturbance, loss of habitat), whereas smaller soil biota were predominantly affected by long‐term consequences (probably loss of organic matter). Reestablishment of grassland resulted in increased abundances of soil biota groups, but since not all groups increased in the same measure, the community structure was not completely restored. We concluded that larger‐sized soil biota are more sensitive to agricultural intensification than smaller‐sized soil biota. Furthermore, since larger‐sized soil biota groups had lower taxonomic richness, we suggest that agricultural intensification exerts strongest effects on species‐poor soil biota groups, thus supporting the hypothesis that biodiversity has an “insurance” function. As soil biota play an important role in agroecosystem functioning, altered soil biota abundances and functional group composition under agricultural intensification are likely to affect the functioning of the agroecosystem.
0
Citation318
0
Save
0

Assessing soil functioning: what is the added value of soil organic carbon quality measurements alongside total organic carbon content?

Guusje Koorneef et al.Jun 25, 2024
Soil organic carbon (SOC) content is the most widely used soil health indicator, but many soil functions are also influenced by the quality of SOC. Yet, standardized SOC quality parameters that can be used in soil health assessments in addition to SOC content are still in development. Here, we investigated the relationships between various SOC parameters (both quantity and quality) and soil functions. We collected 223 soil samples from arable fields in two contrasting Dutch soil types i.e., marine clay and sand. For each sample, we assessed three soil functions (i.e., biological population regulation, element cycling, and soil structure and water regulation) by measuring five indicators per function. We also analyzed SOC quality with four techniques (C:N-ratio, POX-C, Rock-Eval, POM-MAOM fractionation), resulting in 21 SOC quality parameters, and measured SOC content. We then determined for each soil type how much variation in each function indicator was explained by the SOC parameters and other measured intrinsic soil properties. We found that SOC parameters and intrinsic soil properties explained at most 30 ± 22% of the variation in soil function indicators. SOC content explained 9 ± 16% of the variation across functions and soil types. Including one single SOC quality parameter alongside SOC content never had significant added value in explaining soil functions. Only including multiple Rock-Eval parameters alongside SOC content significantly increased the explained variation compared to SOC content alone, as well as combining multiple parameters from the four different SOC quality techniques. We conclude that the relationships between the SOC quality parameters and soil functions are insufficiently straight-forward to add significant explanatory power to SOC content alone. We recommend that before including SOC quality parameters in soil health monitoring, more emphasis should be put on evaluating their relation to soil functions and their potential redundancy when used alongside SOC content.
0
Paper
Citation1
0
Save