TF
Tobias Friedrich
Author with expertise in Climate Change and Paleoclimatology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
1,164
h-index:
29
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis

Fortunat Joos et al.Mar 8, 2013
Abstract. The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.
2
Paper
Citation623
0
Save
0

Real-World Networks Are Low-Dimensional: Theoretical and Practical Assessment

Tobias Friedrich et al.Aug 1, 2024
Recent empirical evidence suggests that real-world networks have very low underlying dimensionality. We provide a theoretical explanation for this phenomenon as well as develop a linear-time algorithm for detecting the underlying dimensionality of such networks. Our theoretical analysis considers geometric inhomogeneous random graphs (GIRGs), a geometric random graph model, which captures a variety of properties observed in real-world networks. These properties include a heterogeneous degree distribution and non-vanishing clustering coefficient, which is the probability that two random neighbors of a vertex are adjacent. Our first result shows that the clustering coefficient of GIRGs scales inverse exponentially with respect to the number of dimensions d, when the latter is at most logarithmic in n, the number of vertices. Hence, for a GIRG to behave like many real-world networks and have a non-vanishing clustering coefficient, it must come from a geometric space of o(log n) dimensions. Our analysis on GIRGs allows us to obtain a linear-time algorithm for determining the dimensionality of a network. Our algorithm bridges the gap between theory and practice, as it comes with a rigorous proof of correctness and yields results comparable to prior empirical approaches, as indicated by our experiments on real-world instances. The efficiency of our algorithm makes it applicable to very large data-sets. We conclude that very low dimensionalities (from 1 to 10) are needed to explain properties of real-world networks.