XS
Xiaokang Sun
Author with expertise in Organic Solar Cell Technology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(0% Open Access)
Cited by:
2
h-index:
11
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Interface Regulation via an Organometallic Ferrocene-Based Molecule toward Inverted Perovskite Solar Cells

Fei Wang et al.Aug 7, 2024
There is a significant challenge of charge recombination at the perovskite/electron transport layer (ETL), coupled with the need of optimized interface charge transfer in inverted perovskite solar cells (PSCs). In this work, an organometallic ferrocene-based molecule, ferrocenyl-bis-thieno[3,2-b]thiophene-2-carboxylate (FcTTPc), with inherent carboxylate and thiophene functionalities surrounding the central ferrocene motif, is meticulously designed and synthesized for the modification of the perovskite/ETL interface. The carboxylate and thiophene groups in the FcTTPc molecule interact strongly with perovskite components, effectively passivating interface defects. Furthermore, the thiophene group of FcTTPc can engage in robust π–π interactions with the ETL, thereby enhancing interface charge transport. Following the interface modification with FcTTPc, an improved alignment of energy levels is achieved, significantly optimizing carrier transport. Due to the interface modification via the FcTTPc molecule, the champion PSC achieves a PCE of 25.39%. The FcTTPc-modified devices maintained over 96% of their initial efficiency under 40% relative humidity conditions for 1500 h.
0

Unravel the Distinctive Roles of Liquid and Solid Additives in Blade‐Coated Active Layer for Organic Solar Cell Modules

Adiljan Wupur et al.Sep 24, 2024
Abstract Although encouraging progress in spin‐coated small‐area organic solar cells (OSCs), reducing efficiency loss caused by differences in film uniformity and morphology when up‐scaled to large‐area modules through meniscus‐guided coating is an important but unsolved issue. In this work, in‐depth research is conducted on the influence of both liquid and solid additives on the film uniformity and morphology of active layer in blade‐coated PM6:L8‐BO binary system. The study reveals that high boiling point liquid additives like 1,8‐diiodooctane (DIO) used in blade‐coating not only delay the volatilization of the solvent but also trigger the Marangoni flow in the same direction as capillary flow, causing excessive aggregation of acceptors, therefore destroying device performance. On the contrary, the solid additive 2‐Iododiphenyl ether (IDPE), which is first reported in this work, can preserve the mechanism for improving device performance while effectively suppressing the excessive aggregation of acceptors during the film‐forming process in blade‐coating from halogen‐free solvent of toluene, resulting in highly homogeneous large‐area active layer films. Consequently, organic solar modules with an impressive efficiency of 15.34% with a total module area of 18.90 cm 2 via blade‐coating based on PM6:L8‐BO are achieved. This study not only provides a deep understanding on the effect of liquid and solid additives during blade‐coating from the perspective of fluid mechanisms but also gives a pathway for the development of green solvent printed high‐efficiency OSCs.
0

Optimizing of Cathode Interface Layers in Organic Solar Cells Using Polyphenols: An Effective Approach

Xiaoman Ding et al.Jun 22, 2024
Abstract The cathode interface layers (CILs) play a crucial role in enhancing the performance of organic solar cells (OSCs). However, challenges arise due to the high work function of CIL and inadequate contact with the active layer, leading to high interface trap recombination and poor charge extraction. In this study, a novel approach is proposed to improve charge injection and extraction in CILs by incorporating polyphenols, trihydroxybenzoic acid (TBA). Focusing on the CIL PDINN, its work function is successfully reduced from 4.14 eV to 3.80 eV and obtained charge collection efficiency of 91.23% through TBA regulation. These enhancements can be ascribed to improved contact between the active layer and the CILs, and enhanced the formation of a fine fiber phase width and inhibited interface recombination. As a result, the power conversion efficiency (PCE) of the binary OSCs comprising PM6: BTP‐ec9 exhibits an increase from 18.2% to 19.3%, placing it among the one of the highest PCE values. Moreover, this approach demonstrated notable applicability for another CILs, as well as various OSCs systems. Overall, this research underscores the importance of regulating and modifying CILs to fully exploit their potential in OSCs devices, while laying the groundwork for optimizing their efficiency and stability.