XX
Xiànghuī Xiāo
Author with expertise in Genomic Studies of Cotton Fiber Development and Improvement
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
2
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exploring the plasmodesmata callose-binding protein gene family in upland cotton: unraveling insights for enhancing fiber length

Haibo Zhang et al.Jun 26, 2024
Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43–4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.
0
Citation2
0
Save
0

Transcriptome analysis revealed the possible contribution of chromosome introgression fragments from Sea Island cotton (Gossypium barbadense) to fiber strength in Upland cotton (Gossypium hirsutum)

Quánwěi Lú et al.Sep 6, 2016
Cotton fiber strength is a critical property determining fiber qualities, and determined by the secondary cell wall development. Understanding the mechanism of fiber development will provide a way to improvement of fiber strength. In this study, the introgression lines of upland and sea island cotton, and have experience of four generations of backcross with upland parent, and have significant higher fiber strength than their upland parent, and the transcriptome were analyzed and compared between the introgression lines and their upland parent. There were 2201 differentially expressed genes (DEG) identified by comparing two introgression lines with their recurrent parent CCRI45, in different development stages from 15 days post-anthesis (DPA) to 28 DPA. The up-regulated genes regulated the polysaccharide metabolic process, single-organism localization, cell wall organization or biogenesis and so on. The down-regulated genes involved in the microtubule-based process, cellular response to stress, cell cycle process and so on. Further functional analysis revealed three significant functional genes, XLOC_036333 (mannosyl-oligosaccharide-alpha-mannosidase mns1), XLOC_029945 (FLA8) and XLOC_075372 (snakin-1), playing important roles in the regulation of cotton fiber strength. Our results provide important candidates genes and inspirations for the future investigation of the molecular mechanism of fiber quality formation, and improvement of cotton fiber quality in breeding.
0

Genome-Wide Identification of the Oxidative Stress 3 (OXS3) Gene Family and Analysis of Its Expression Pattern During Ovule Development and Under Abiotic Stress in Cotton

Yukui Zhang et al.Nov 6, 2024
Oxidative Stress 3 (OXS3) encodes a plant-specific protein that makes great contributions to a plant’s stress tolerance. However, reports on genome-wide identification and expression pattern analyses of OXS3 were only found for Arabidopsis, wheat, and rice. The genus Gossypium (cotton) serves as an ideal model for studying allopolyploidy. Therefore, two diploid species (G. raimondii and G. arboreum) and two tetraploid species (G. hirsutum and G. barbadense) were chosen in this study for a bioinformatics analysis, resulting in 12, 12, 22, and 23 OXS3 members, respectively. A phylogenetic tree was constructed using 69 cotton OXS3 genes alongside 8 Arabidopsis, 10 rice, and 9 wheat genes, which were classified into three groups (Group 1–3). A consistent evolutionary relationship with the phylogenetic tree was observed in our structural analysis of the cotton OXS3 genes and the clustering of six conserved motifs. Gene duplication analysis across the four representative Gossypium species suggested that whole-genome duplication, segmental duplication, and tandem duplication might play significant roles in the expansion of the OXS3 gene family. Some existing elements responsive to salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) were identified by cis-regulatory element analysis in the promoter regions, which could influence the expression levels of cotton OXS3 genes. Furthermore, the expression patterns of the GhOXS3 gene were examined in different tissues or organs, as well as in developing ovules and fibers, with the highest expression observed in ovules. GhOXS3 genes exhibited a more pronounced regulatory response to abiotic stresses, of which ten GhOXS3 genes showed similar expression patterns under cold, heat, salt, and drought treatments. These observations were verified by quantitative real-time PCR experiments. These findings enhance our understanding of the evolutionary relationships and expression patterns of the OXS3 gene family and provide valuable insights for the identification of vital candidate genes for trait improvement in cotton breeding.