DK
Dun‐Yen Kang
Author with expertise in Membrane Gas Separation Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
222
h-index:
28
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Intermediate Layer Free PVDF Evolved CMS on Ceramic Hollow Fiber Membrane for CO2 Capture

Yen-Hsun Chen et al.Jun 3, 2024
The use of carbonized polymers has ushered in a new class of materials with profound implications for the gas separation industry. This study explored the transformation of polyvinylidene fluoride (PVDF) into microporous carbon structures coated onto ceramic substrates, enabling in situ growth of carbon molecular sieve (CMS) materials over hollow fibers. This material featured more robust CMS membranes than alumina and demonstrated exceptional capability in vital gas separations, particularly for CO2/CH4. This novel approach increased the selectivity for gases and exhibited remarkable aging resilience, so the material is a compelling candidate for high-performance gas separations. Furthermore, after 31 days, the weathered carbon dioxide membrane exhibited a slight permeability drift from 234.88 barrers to 195.35 barrers, while the CO2/CH4 ratio increased from 24.21 to 57.14, surpassing the Robeson 2008 upper bound. The PVDF-derived supported hollow fiber carbon membranes provide a blueprint for designing membranes for carbon capture. With the high packing density of the hollow fiber membrane and improved mechanical strength of the supported carbon membrane, this approach overcame the high fabrication costs and brittleness of other carbon membranes. In addition, the entire process for preparation of the PVDF carbon films is easily scaled up and has great potential for future practical application.
0
Citation1
0
Save
0

Metal-organic frameworks as thermocatalysts for hydrogen peroxide generation and environmental antibacterial applications

Ajitesh Pal et al.Jan 8, 2025
Reactive oxygen species (ROS) are highly reactive, making them useful for environmental and health applications. Traditionally, photocatalysts and piezocatalysts have been used to generate ROS, but their utilization is limited by various environmental and physical constraints. This study introduces metal-organic frameworks (MOFs) as modern thermocatalysts efficiently producing hydrogen peroxide (H 2 O 2 ) from small temperature differences. Temperature fluctuations, abundant in daily life, offer tremendous potential for practical thermocatalytic applications. As proof of concept, MOF materials coated onto carbon fiber fabric (MOF@CFF) created a thermocatalytic antibacterial filter. The study compared three different MOFs (CuBDC, MOF-303, and ZIF-8) with bismuth telluride (Bi 2 Te 3 ), a known thermocatalytic material. ZIF-8 demonstrated superior H 2 O 2 generation under low-temperature differences, achieving 96% antibacterial activity through temperature variation cycles. This work advances potential in thermoelectric applications of MOFs, enabling real-time purification and disinfection through H 2 O 2 generation. The findings open interdisciplinary avenues for leveraging thermoelectric effects in catalysis and various technologies.
0

In Situ Synthesis of MIL-160 Tubular Membrane with High Selectivity for Gas Separation

Hsiang‐Yu Wang et al.Jan 7, 2025
Metal–organic frameworks (MOFs) are a rapidly growing class of crystalline porous materials known for their high surface area and tunable porosity, making them ideal for various applications, including gas separation. While the utility of MOFs primarily stems from their intrinsic micropores, fabricating MOF-based membranes further enhances their applicability, particularly in CO2 separation from flue gas (CO2/N2) and natural gas (CO2/CH4). In this work, we developed an in situ synthesis method to fabricate MIL-160 membranes on ceramic tubular substrates for gas separation. MIL-160, with its three-dimensional interconnected channels and a pore-limiting diameter of 4.3 Å, is well-suited for separating small gas molecules. Through multiple synthesis trials, we produced MIL-160 membranes with distinct crystal morphologies─ball, flake, and cuboid─and characterized them using X-ray diffraction, scanning electron microscopy, nitrogen physisorption, gas adsorption, thermogravimetric analysis, and confocal microscopy. The crystal morphology was found to significantly influence membrane quality, particularly in reducing grain boundaries and pinholes. Confocal microscopy revealed substantial defects in the ball- and flake-shaped membranes, while the cuboid-shaped membrane showed minimal dye infiltration, indicating fewer defects and a more uniform structure. Single-gas permeation tests confirmed the superior performance of the cuboid-shaped MIL-160 membrane, achieving ideal CO2/N2 and CO2/CH4 selectivities of 56.8 and 130, respectively, with a CO2 permeance of 75.5 GPU. In mixed-gas tests, the membrane reached a CO2/N2 selectivity of 259 at XCO2 = 0.5, and a CO2/CH4 selectivity of 224 at XCO2 = 0.2. Additionally, molecular simulations of binary gas adsorption supported these findings, demonstrating competitive CO2 adsorption in the presence of N2 and CH4. This study highlights the potential of in situ synthesis of MIL-160 membranes on tubular substrates as a scalable and effective solution for CO2 removal from flue gas and natural gas.
0

MOF-303 with Lowered Water Evaporation Enthalpy for Solar Steam Generation

Yi‐Hsuan Lin et al.Sep 6, 2024
Hydrophilic metal-organic frameworks (MOFs) are promising for solar steam generation from waste or seawater. In this study, we propose a MOF-based Janus membrane for efficient solar steam generation. We selected MOF-303 for its hydrophilic properties and 1D channels with 6.5 Å cavity diameter, making it an excellent water-absorbing layer. Characterization via Raman spectroscopy and differential scanning calorimetry indicates that the nanoconfinement within MOF-303 can reduce the water evaporation enthalpy, thereby boosting water production efficiency. When deposited on various substrates, MOF-303 aimed to optimize solar steam generation. We enhanced the membrane performance by incorporating carbon black (CB), polydopamine (PDA), and perfluoro-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-F), materials known for their solar-to-thermal energy conversion capabilities. PEDOT-F, in particular, also served as a hydrophobic layer, preventing salt recrystallization during seawater operation. Under one sun irradiation, the water evaporation flux for deionized water increased from 0.31 to 0.79 kg h