AK
Adlen Ksentini
Author with expertise in Software-Defined Networking and Network Virtualization
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(38% Open Access)
Cited by:
3,725
h-index:
47
/
i10-index:
155
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cache in the air: exploiting content caching and delivery techniques for 5G systems

Xiaofei Wang et al.Feb 1, 2014
The demand for rich multimedia services over mobile networks has been soaring at a tremendous pace over recent years. However, due to the centralized architecture of current cellular networks, the wireless link capacity as well as the bandwidth of the radio access networks and the backhaul network cannot practically cope with the explosive growth in mobile traffic. Recently, we have observed the emergence of promising mobile content caching and delivery techniques, by which popular contents are cached in the intermediate servers (or middleboxes, gateways, or routers) so that demands from users for the same content can be accommodated easily without duplicate transmissions from remote servers; hence, redundant traffic can be significantly eliminated. In this article, we first study techniques related to caching in current mobile networks, and discuss potential techniques for caching in 5G mobile networks, including evolved packet core network caching and radio access network caching. A novel edge caching scheme based on the concept of content-centric networking or information-centric networking is proposed. Using trace-driven simulations, we evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks. Furthermore, we conclude the article by exploring new relevant opportunities and challenges.
0

Named Data Networking in Vehicular Ad Hoc Networks: State-of-the-Art and Challenges

Hakima Khelifi et al.Jan 24, 2019
Information-centric networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, named data networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is intelligent transportation system realized through vehicular ad hoc network (VANET) where vehicles exchange information and content with each other and with the infrastructure. Up to date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community.
0

Follow me cloud: interworking federated clouds and distributed mobile networks

Tarik Taleb et al.Sep 1, 2013
This article introduces the Follow-Me Cloud concept and proposes its framework. The proposed framework is aimed at smooth migration of all or only a required portion of an ongoing IP service between a data center and user equipment of a 3GPP mobile network to another optimal DC with no service disruption. The service migration and continuity is supported by replacing IP addressing with service identification. Indeed, an FMC service/application is identified, upon establishment, by a session/service ID, dynamically changing along with the service being delivered over the session; it consists of a unique identifier of UE within the 3GPP mobile network, an identifier of the cloud service, and dynamically changing characteristics of the cloud service. Service migration in FMC is triggered by change in the IP address of the UE due to a change of data anchor gateway in the mobile network, in turn due to UE mobility and/or for load balancing. An optimal DC is then selected based on the features of the new data anchor gateway. Smooth service migration and continuity are supported thanks to logic installed at UE and DCs that maps features of IP flows to the session/service ID.
0

Follow-Me Cloud: When Cloud Services Follow Mobile Users

Tarik Taleb et al.Feb 4, 2016
The trend towards the cloudification of the 3GPP LTE mobile network architecture and the emergence of federated cloud infrastructures call for alternative service delivery strategies for improved user experience and efficient resource utilization. We propose Follow-Me Cloud (FMC), a design tailored to this environment, but with a broader applicability, which allows mobile users to always be connected via the optimal data anchor and mobility gateways, while cloud-based services follow them and are delivered via the optimal service point inside the cloud infrastructure. Follow-Me Cloud applies a Markov-decision-process-based algorithm for cost-effective performance-optimized service migration decisions, while two alternative schemes to ensure service continuity and disruption-free operation are proposed, based on either software defined networking technologies or the locator/identifier separation protocol. Numerical results from our analytic model for follow-me cloud, as well as testbed experiments with the two alternative follow-me cloud implementations we have developed, demonstrate quantitatively and qualitatively the advantages it can bring about.
0

Toward Enforcing Network Slicing on RAN: Flexibility and Resources Abstraction

Adlen Ksentini et al.Jan 1, 2017
Knowing the variety of services and applications to be supported in the upcoming 5G systems, the current "one size fits all" network architecture is no more efficient. Indeed, each 5G service may have different needs in terms of latency, bandwidth, and reliability, which cannot be sustained by the same physical network infrastructure. In this context, network virtualization represents a viable way to provide a network slice tailored to each service. Several 5G initiatives (from industry and academia) have been pushing for solutions to enable network slicing in mobile networks, mainly based on SDN, NFV, and cloud computing as key enablers. The proposed architectures focus principally on the process of instantiating and deploying network slices, while ignoring how they are enforced in the mobile network. While several techniques of slicing the network infrastructure exist, slicing the RAN is still challenging. In this article, we propose a new framework to enforce network slices, featuring radio resources abstraction. The proposed framework is complementary to the ongoing solutions of network slicing, and fully compliant with the 3GPP vision. Indeed, our contributions are twofold: a fully programmable network slicing architecture based on the 3GPP DCN and a flexible RAN (i.e., programmable RAN) to enforce network slicing; a two-level MAC scheduler to abstract and share the physical resources among slices. Finally, a proof of concept on RAN slicing has been developed on top of OAI to derive key performance results, focusing on the flexibility and dynamicity of the proposed architecture to share the RAN resources among slices.
0

Improving Traffic Forecasting for 5G Core Network Scalability: A Machine Learning Approach

Imad Alawe et al.Nov 1, 2018
5G is expected to provide network connectivity to not only classical devices (i.e., tablets, smartphones, etc.) but also to the IoT, which will drastically increase the traffic load carried over the network. 5G will mainly rely on NFV and SDN to build flexible and on-demand instances of functional networking entities via VNFs. Indeed, 3GPP is devising a new architecture for the core network, which replaces point-to-point interfaces used in 3G and 4G by producer/consumer-based communication among 5G core network functions, facilitating deployment over a virtual infrastructure. One big advantage of using VNFs is the possibility of dynamic scaling, depending on traffic load (i.e., instantiate new resources to VNFs when the traffic load increases and reduce the number of resources when the traffic load decreases). In this article, we propose a novel mechanism to scale 5G core network resources by anticipating traffic load changes through forecasting via ML techniques. The traffic load forecast is achieved by using and training a neural network on a real dataset of traffic arrival in a mobile network. Two techniques were used and compared: RNN, more specifically LSTM; and DNN. Simulation results show that the forecast-based scalability mechanism outperforms the threshold-based solutions, in terms of latency to react to traffic change, and delay to have new resources ready to be used by the VNF to react to traffic increase.
0

Federated Learning for UAVs-Enabled Wireless Networks: Use Cases, Challenges, and Open Problems

Bouziane Brik et al.Jan 1, 2020
The use of Unmanned Aerial Vehicles (UAVs) for wireless networks is rapidly growing as key enablers of new applications, including: surveillance and monitoring, military, delivery of medical supplies, telecommunications, etc. In particular, due to their unique proprieties such as flexibility, mobility, and adaptive altitude, UAVs can act as mobile base stations to improve capacity, coverage, and energy efficiency of wireless networks. On the other hand, UAVs can operate as mobile terminals to enable many applications such as item delivery and real-time video streaming. In such context, data-driven Deep Learning-assisted (DL) approaches are gaining a growing interest to not only exploit the huge amount of generated data, but also to optimize the network operations, and hence ensure the QoS requirements of these emerging wireless networks. However, UAVs are resource-constrained devices especially in terms of computing and power resources, and traditional DL-assisted schemes are cloud-centric, which require UAVs' data to be sent and stored in a centralized server. This represents a critical issue since it generates a huge network communication overhead to send raw data towards the centralized entity, and hence may lead to network bandwidth and energy inefficiency of UAV devices. In addition, the transferred data may contain personnel data such as UAVs' localization and identity, which can directly affect UAVs' privacy concerns. As a solution, Federated Deep Learning (FDL), or distributed DL, was introduced, where the basic idea is to keep raw data where it is generated, while sending only users' local trained DL models to the centralized entity for aggregation. Due to its privacy-preserving and low communication overhead and latency, FDL is much more adequate for many UAVs-enabled wireless applications. In this work, we provide a general introduction of FDL application for UAV-enabled wireless networks. We first introduce the FDL concept and its fundamentals. Then, we highlight the possible applications of FDL in UAVs-enabled wireless networks by addressing the suitability and how to use FDL to deal with target challenges. Finally, we discuss about key technical challenges, open issues, and future research directions on FDL-based approaches in such context.
Load More