MZ
Min Zhang
Author with expertise in Optical Fiber Communication Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
215
h-index:
37
/
i10-index:
125
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Intelligent constellation diagram analyzer using convolutional neural network-based deep learning

Danshi Wang et al.Jul 10, 2017
An intelligent constellation diagram analyzer is proposed to implement both modulation format recognition (MFR) and optical signal-to-noise rate (OSNR) estimation by using convolution neural network (CNN)-based deep learning technique. With the ability of feature extraction and self-learning, CNN can process constellation diagram in its raw data form (i.e., pixel points of an image) from the perspective of image processing, without manual intervention nor data statistics. The constellation diagram images of six widely-used modulation formats over a wide OSNR range (15~30 dB and 20~35 dB) are obtained from a constellation diagram generation module in oscilloscope. Both simulation and experiment are conducted. Compared with other 4 traditional machine learning algorithms, CNN achieves the better accuracies and is obviously superior to other methods at the cost of O(n) computation complexity and less than 0.5 s testing time. For OSNR estimation, the high accuracies are obtained at epochs of 200 (95% for 64QAM, and over 99% for other five formats); for MFR, 100% accuracies are achieved even with less training data at lower epochs. The experimental results show that the OSNR estimation errors for all the signals are less than 0.7 dB. Additionally, the effects of multiple factors on CNN performance are comprehensively investigated, including the training data size, image resolution, and network structure. The proposed technique has the potential to be embedded in the test instrument to perform intelligent signal analysis or applied for optical performance monitoring.
0
Citation214
0
Save
0

When Large Language Models Meet Optical Networks: Paving the Way for Automation

Danshi Wang et al.Jun 27, 2024
Since the advent of GPT, large language models (LLMs) have brought about revolutionary advancements in all walks of life. As a superior natural language processing (NLP) technology, LLMs have consistently achieved state-of-the-art performance in numerous areas. However, LLMs are considered to be general-purpose models for NLP tasks, which may encounter challenges when applied to complex tasks in specialized fields such as optical networks. In this study, we propose a framework of LLM-empowered optical networks, facilitating intelligent control of the physical layer and efficient interaction with the application layer through an LLM-driven agent (AI-Agent) deployed in the control layer. The AI-Agent can leverage external tools and extract domain knowledge from a comprehensive resource library specifically established for optical networks. This is achieved through user input and well-crafted prompts, enabling the generation of control instructions and result representations for autonomous operation and maintenance in optical networks. To improve LLM’s capability in professional fields and stimulate its potential on complex tasks, the details of performing prompt engineering, establishing domain knowledge library, and implementing complex tasks are illustrated in this study. Moreover, the proposed framework is verified on two typical tasks: network alarm analysis and network performance optimization. The good response accuracies and semantic similarities of 2400 test situations exhibit the great potential of LLM in optical networks.