BA
Byron Adams
Author with expertise in Microbial Diversity in Antarctic Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
2,925
h-index:
53
/
i10-index:
131
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cross-biome metagenomic analyses of soil microbial communities and their functional attributes

Noah Fierer et al.Dec 10, 2012
For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.
0
Paper
Citation1,404
0
Save
0

Soil nematode abundance and functional group composition at a global scale

Johan Hoogen et al.Jul 24, 2019
Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios. High-resolution spatial maps of the global abundance of soil nematodes and the composition of functional groups show that soil nematodes are found in higher abundances in sub-Arctic regions, than in temperate or tropical regions.
0
Paper
Citation776
0
Save
0

Diversity and distribution of Victoria Land biota

Byron Adams et al.May 17, 2006
Understanding the relationship between soil biodiversity and ecosystem functioning is critical to predicting and monitoring the effects of ecosystem changes on important soil processes. However, most of Earth's soils are too biologically diverse to identify each species present and determine their functional role in food webs. The soil ecosystems of Victoria Land (VL) Antarctica are functionally and biotically simple, and serve as in situ models for determining the relationship between biodiversity and ecosystem processes. For a few VL taxa (microarthropods, nematodes, algae, mosses and lichens), species diversity has been intensively assessed in highly localized habitats, but little is known of how community assemblages vary across broader spatial scales, or across latitudinal and environmental gradients. The composition of tardigrade, rotifer, protist, fungal and prokaryote communities is emerging. The latter groups are the least studied, but potentially the most diverse. Endemism is highest for microarthropods and nematodes, less so for tardigrades and rotifers, and apparently low for mosses, lichens, protists, fungi and prokaryotes. Much of what is known about VL diversity and distribution occurs in an evolutionary and ecological vacuum; links between taxa and functional role in ecosystems are poorly known and future studies must utilize phylogenetic information to infer patterns of community assembly, speciation, extinction, population processes and biogeography. However, a comprehensive compilation of all the species that participate in soil ecosystem processes, and their distribution across regional and landscape scales is immediately achievable in VL with the resources, tools, and expertise currently available. We suggest that the soil ecosystems of VL should play a major role in exploring the relationship between biodiversity and ecosystem functioning, and in monitoring the effects of environmental change on soil processes in real time and space.
0
Paper
Citation319
0
Save
0

The underground network: facilitation in soil bacteria

Jesse Jorna et al.Jun 27, 2024
Our understanding of the fundamental role that soil bacteria play in the structure and functioning of Earth's ecosystems is ever expanding, but insight into the nature of interactions within these bacterial communities remains rudimentary. Bacterial facilitation may enhance the establishment, growth, and succession of eukaryotic biota, elevating the complexity and diversity of the entire soil community and thereby modulating multiple ecosystem functions. Global climate change often alters soil bacterial community composition, which, in turn, impacts other dependent biota. However, the impact of climate change on facilitation within bacterial communities remains poorly understood even though it may have important cascading consequences for entire ecosystems. The wealth of metagenomic data currently being generated gives community ecologists the ability to investigate bacterial facilitation in the natural world and how it affects ecological systems responses to climate change. Here, we review current evidence demonstrating the importance of facilitation in promoting emergent properties such as community diversity, ecosystem functioning, and resilience to climate change in soil bacterial communities. We show that a synthesis is currently missing between the abundant data, newly developed models and a coherent ecological framework that addresses these emergent properties. We highlight that including phylogenetic information, the physicochemical environment, and species‐specific ecologies can improve our ability to infer interactions in natural soil communities. Following these recommendations, studies on bacterial facilitation will be an important piece of the puzzle to understand the consequences of global change on ecological communities and a model to advance our understanding of facilitation in complex communities more generally.
0
Paper
Citation1
0
Save
0

Response of a Terrestrial Polar Ecosystem to the March 2022 Antarctic Weather Anomaly

J. Barrett et al.Jul 31, 2024
Abstract Record high temperatures were documented in the McMurdo Dry Valleys, Antarctica, on 18 March 2022, exceeding average temperatures for that day by nearly 30°C. Satellite imagery and stream gage measurements indicate that surface wetting coincided with this warming more than 2 months after peak summer thaw and likely exceeded thresholds for rehydration and activation of resident organisms that typically survive the cold and dry conditions of the polar fall in a freeze‐dried state. This weather event is notable in both the timing and magnitude of the warming and wetting when temperatures exceeded 0°C at a time when biological communities and streams have typically entered a persistent frozen state. Such events may be a harbinger of future climate conditions characterized by warmer temperatures and greater thaw in this region of Antarctica, which could influence the distribution, activity, and abundance of sentinel taxa. Here we describe the ecosystem responses to this weather anomaly reporting on meteorological and hydrological measurements across the region and on later biological observations from Canada Stream, one of the most diverse and productive ecosystems within the McMurdo Dry Valleys.
0
Paper
Citation1
0
Save