JG
Jingwen Guo
Author with expertise in Quantum Spin Liquids in Frustrated Magnets
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
1,846
h-index:
21
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Electric-field control of tri-state phase transformation with a selective dual-ion switch

Nianpeng Lu et al.May 30, 2017
Materials are described here that can change their crystalline phase in response to the electrically controlled insertion or extraction of oxygen and hydrogen ions, giving rise to three distinct phases with different optical, electrical and magnetic properties. Materials that change their phase in response to the electrical injection or extraction of an ionic species are harnessed in a wide range of applications, including batteries that can operate in a range of climates and smart windows that can control the amount of light or heat that passes through them. As Nianpeng Lu et al. report, increasing the number of transferrable ionic species can greatly enhance the functionality of the system. Specifically, they report a material system in which the electrical insertion and extraction of oxygen (O2−) and hydrogen (H+) ions can be independently controlled, giving reversible access to three distinct material phases that have very different optical, electrical and magnetic properties. This finding could further broaden the range of potential applications for phase-changing materials. Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries1, smart windows2 and fuel cells3. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions4,5,6,7,8,9,10). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic2 and magnetoelectric11 effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3−δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows2,9. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3−δ is a ferromagnetic metal12, and SrCoO2.5 is an antiferromagnetic insulator13—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.
0

Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017

Christopher Troeger et al.Dec 12, 2018
BackgroundAlthough the burden of influenza is often discussed in the context of historical pandemics and the threat of future pandemics, every year a substantial burden of lower respiratory tract infections (LRTIs) and other respiratory conditions (like chronic obstructive pulmonary disease) are attributable to seasonal influenza. The Global Burden of Disease Study (GBD) 2017 is a systematic scientific effort to quantify the health loss associated with a comprehensive set of diseases and disabilities. In this Article, we focus on LRTIs that can be attributed to influenza.MethodsWe modelled the LRTI incidence, hospitalisations, and mortality attributable to influenza for every country and selected subnational locations by age and year from 1990 to 2017 as part of GBD 2017. We used a counterfactual approach that first estimated the LRTI incidence, hospitalisations, and mortality and then attributed a fraction of those outcomes to influenza.FindingsInfluenza LRTI was responsible for an estimated 145 000 (95% uncertainty interval [UI] 99 000–200 000) deaths among all ages in 2017. The influenza LRTI mortality rate was highest among adults older than 70 years (16·4 deaths per 100 000 [95% UI 11·6–21·9]), and the highest rate among all ages was in eastern Europe (5·2 per 100 000 population [95% UI 3·5–7·2]). We estimated that influenza LRTIs accounted for 9 459 000 (95% UI 3 709 000–22 935 000) hospitalisations due to LRTIs and 81 536 000 hospital days (24 330 000–259 851 000). We estimated that 11·5% (95% UI 10·0–12·9) of LRTI episodes were attributable to influenza, corresponding to 54 481 000 (38 465 000–73 864 000) episodes and 8 172 000 severe episodes (5 000 000–13 296 000).InterpretationThis comprehensive assessment of the burden of influenza LRTIs shows the substantial annual effect of influenza on global health. Although preparedness planning will be important for potential pandemics, health loss due to seasonal influenza LRTIs should not be overlooked, and vaccine use should be considered. Efforts to improve influenza prevention measures are needed.FundingBill & Melinda Gates Foundation.
0

Glutathione-responsive CD-MOFs co-loading honokiol and indocyanine green biomimetic active targeting to enhance photochemotherapy for breast cancer

Yuanzhi He et al.Jun 6, 2024
Breast cancer has now replaced lung cancer as the most prevalent malignant tumor worldwide, posing a serious health risk to women. We have recently designed a promising option strategy for the treatment of breast cancer. In this work, cyclodextrin metal-organic frameworks with high drug-carrying properties were endo-crosslinked by 3,3'dithiodipropionyl chloride to form cubic phase gel nanoparticles, which were drug-loaded and then coated by MCF-7 cell membranes. After intravenous injection, this multifunctional nanomedicine achieved dramatically homologous targeting co-delivery of honokiol and indocyanine green to the breast tumor. Further, the disulfide bonds in the nanostructures achieved glutathione-responsive drug release, induced tumor cells to produce reactive oxygen species and promoted apoptosis, resulting in tumor necrosis, and at the same time, inhibited Ki67 protein expression, which enhanced photochemotherapy, and resulted in a 94.08 % in vivo tumor suppression rate in transplanted tumor-bearing mice. Thereby, this nanomimetic co-delivery system may have a place in breast cancer therapy due to its simple fabrication process, excellent biocompatibility, efficient targeted delivery of insoluble drugs, and enhanced photochemotherapy.
0
Citation1
0
Save
0

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota

Jingwen Guo et al.Jan 3, 2025
Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage. This study explored the effectiveness and underlining mechanism of an excellent probiotic property Lactiplantibacillus plantarum P101 (L. plantarum P101) to the combined hepatotoxicity of MPs and DEHP. In this study, mice were exposed to DEHP and MPs via free drinking water, followed by intervention with L. plantarum P101. Results showed that co-exposure to DEHP and MPs caused severe oxidative stress and inflammation in the liver and intestines, which was reversed after probiotic intervention. Moreover, the intervention reshaped the structure of gut microbiota and alleviated the liver damage after the combined exposure. Together, we found the intervention of L. plantarum P101 effectively mitigated the toxic effects on the liver system caused by the co-exposure to MPs and DEHP, offering a promising strategy for reducing the combined toxicity of these substances.