LZ
Luping Zhang
Author with expertise in Cochlear Neuropathy and Hearing Loss Mechanisms
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
1
h-index:
13
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A novel variant in GAS2 is associated with autosomal dominant nonsyndromic hearing impairment in a Chinese family

Luping Zhang et al.Jul 2, 2024
Abstract Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616–2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2 -associated progressive hearing loss.
0
Citation1
0
Save
0

THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis

Luping Zhang et al.Jul 30, 2019
Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing, we identified a heterozygous p.L183V variant in THOC1 as the probable cause of the late-onset, progressive, non-syndromic hearing loss in a large dominant family. Thoc1, a member of the THO/TREX ribonucleoprotein complex, is highly expressed in mouse and zebrafish hair cells. The Thoc1 mutant zebrafish lacks the C-startle response, indicative of the hearing dysfunction. Both Thoc1 mutant and knockdown zebrafish have greatly reduced hair cell numbers, while the latter can be rescued by embryonic microinjection of human wild-type THOC1 mRNA but to significantly lesser degree by the p.L183V mutant mRNA. The Thoc1 deficiency resulted in marked apoptosis in zebrafish hair cells. Blocking p53 significantly rescued the hair cell loss in the Thoc1 knockdown zebrafish. Our results suggested that THOC1 deficiency lead to late-onset, progressive hearing loss through p53-mediated hair cell apoptosis.
0

Expediting the Volmer Step of Alkaline Hydrogen Oxidation with High-Efficiency and CO-Tolerance by Ru–O–Eu Bridge

Luping Zhang et al.Dec 3, 2024
The quest for economical and highly efficient nanomaterials for the alkaline hydrogen oxidation reaction (HOR) is imperative in advancing the technology of anion exchange membrane fuel cells (AEMFCs). Efforts using Pt-based electrocatalysts for alkaline HOR are greatly plagued by their finitely intrinsic activities and significant CO poisoning, stemming from the difficulty of simultaneously optimizing surface adsorption toward different hydrogen-related adsorbates. Herein, Ru clusters coupled with Eu2O3 immobilized within N-doped carbon nanofibers (Ru/Eu2O3@N-CNFs) are developed toward drastically boosted electrocatalysis for HOR via a d-p-f gradient orbital coupling strategy. Theoretical calculations and in situ operando spectroscopy discover that the induction of Eu2O3 optimizes the Ru site electronic structure via constructing the gradient orbital coupling of Ru(3d)-O(2p)-Eu(4f), leading to optimal H intermediates, improved adsorption ability of OH and reduced energy barrier of water formation, and promoted CO oxidation, endowing the Ru/Eu2O3 as the promising catalyst alternative for fast alkaline hydrogen electrooxidation. As a result, the Ru/Eu2O3@N-CNFs reach an impressive kinetic current densities (jk) value of 156.3 mA cm–2 at 50 mV (38.4 times higher than Pt/C), and decent stability over 35000 s continuous operation. This comprehensive investigation featuring d-p-f gradient orbital coupling provides valuable insights for the strategic development of high-performance Ru-based materials for HOR and beyond.
0

Ligand Effect-Induced Electronic Structure Manipulation of Media-Entropy Alloy for Remarkable Stability over 50,000 Cycles in Oxygen Reduction

Sijie Chen et al.Nov 19, 2024
Modulating the "trade-off" between activity and durability of Pd-based alloys while eliminating the dissolution of the nonprecious metal element issue is highly significant for the advancement of commercializing anion-exchange membrane fuel cells (AEMFCs). Herein, by harmonizing composition and ligand effects and targeting the stability concerns of Pd-based alloys, we propose PdRhNi ternary medium-entropy-alloy (MEA) networks (PdRhNi ANs) as exceptionally efficient oxygen reduction reaction (ORR) electrocatalysts via ligand effect. The results of theoretical calculations provide compelling evidence that the ligand effect of Ni in PdRhNi ANs, which can endow an inductive effect to reshape the electronic configuration to induce a reduced energy barrier in the rate-determining steps, optimizes the adsorption energy of O-related intermediates and lowers the d-band center of metal species, collectively boosting the anti-CO capacity and the ORR efficiency. Consequently, the as-made PdRhNi ANs not only demonstrate significantly enhanced electrocatalytic properties with a half-wave potential of 0.85 V and excellent resistance to CO toxicity, in contrast to those of commercial Pt/C and binary counterparts, but also exhibit a negligible half-wave potential decline after 50,000 cycle stability examination. More excitingly, the homemade AEMFC with a PdRhNi AN air cathode delivers a higher power density of 109 mW cm–2, surpassing that of the PdRh AN-based battery, highlighting promising prospects for implementing MEA materials with ligand engineering in AEMFC environments.