An inverse relationship between egg and clutch size has been found repeatedly across animal groups, including birds, reptiles and amphibians, and is considered to be a result of resource limitations and physical constraints on the reproducing female. However, few studies have contextualised this relationship with respect to various environmental selecting pressures and life history traits that have also likely influenced the selection of an optimal egg/clutch size combination, while even fewer have tested these interrelationships using robust natural history datasets. In this study, we aimed to test current hypothesises regarding these relationships on both egg and clutch sizes among the Australian Anurans, which to date have not received this kind of investigation. Specifically, we looked at the influence of environmental selecting pressures (egg laying location, environment persistence and bioregion) and life history traits (adult female body size, egg development type, parental care level, breeding period and temporal breeding pattern). As expected, a clear inverse relationship was found between egg and clutch size, while female body size was positively related to both. Generally speaking, smaller clutches of larger eggs tended to be produced by species that i) oviposit terrestrially, ii) showcase direct development and iii) possess high levels of parental care. Temporal breeding pattern was strongly related to clutch size only, with large clutches occurring in explosive breeding species, while breeding habitat was strongly related to egg size only, with large eggs sizes occurring in terrestrial species. Altogether, these findings indicate that numerous factors have likely influenced the evolution of an optimal clutch type in this group, highlighting the importance of incorporating such variables into animal studies on egg and clutch sizes.