TK
Tetsu Kogiso
Author with expertise in Tectonic and Geochronological Evolution of Orogens
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1,472
h-index:
23
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts

Tetsu Kogiso et al.Apr 1, 1997
Dehydration experiments on natural amphibolite have been carried out under upper mantle P/T conditions, in order to examine transportation of trace elements during dehydration processes in the subducted oceanic lithosphere. Pb, Nd, and Rb are more readily transported by aqueous fluids during amphibolite dehydration than U-Th, Sm, and Sr, respectively. The results indicates that the dehydration of subducted oceanic crust may result in large increases in U/Pb, Th/Pb and Sm/Nd ratios, and a decrease inRb/Sr ratios of subducted oceanic crust. This ultimately leads to higher Pb and Nd isotopic ratios, and lower Sr isotopic ratios in the subducted oceanic crust than the present MORB source mantle, given a sufficiently long periods of isolation in the mantle. It follows that the very high Pb isotopic ratios observed in some ocean island basalts, known as HIMU, can be readily achieved by incorporation of ancient subducted crust into their mantle source. However, Sr and Nd isotopic ratios cannot be explained by bulk mixture of the ancient subducted oceanic crust with depleted or primitive mantle, but require significant fractionation ofNd/Sr ratios in the subducted oceanic crust before mixing with mantle material. Possible processes to produce Sr and Nd isotopic compositions similar to that of HIMU may involve partial melting of recycled subducted basaltic crust under lower mantle conditions and refertilization of primitive mantle by the partial melt.
0
Paper
Citation544
0
Save
0

Alkalic magmas generated by partial melting of garnet pyroxenite

M. Hirschmann et al.Jan 1, 2003
Research Article| June 01, 2003 Alkalic magmas generated by partial melting of garnet pyroxenite Marc M. Hirschmann; Marc M. Hirschmann 1Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA, and Division of Geological and Planetary Science, 170-25, California Institute of Technology, Pasadena, California 91125, USA Search for other works by this author on: GSW Google Scholar Tetsu Kogiso; Tetsu Kogiso 2Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA Search for other works by this author on: GSW Google Scholar Michael B. Baker; Michael B. Baker 3 Division of Geological and Planetary Sciences, 170-25, California Institute of Technology, Pasadena, California 91125, USA Search for other works by this author on: GSW Google Scholar Edward M. Stolper Edward M. Stolper 3 Division of Geological and Planetary Sciences, 170-25, California Institute of Technology, Pasadena, California 91125, USA Search for other works by this author on: GSW Google Scholar Geology (2003) 31 (6): 481–484. https://doi.org/10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2 Article history received: 17 Oct 2002 rev-recd: 05 Mar 2003 accepted: 07 Mar 2003 first online: 02 Jun 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Marc M. Hirschmann, Tetsu Kogiso, Michael B. Baker, Edward M. Stolper; Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 2003;; 31 (6): 481–484. doi: https://doi.org/10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGeology Search Advanced Search Abstract Many oceanic-island basalts (OIBs) with isotopic signatures of recycled crustal components are silica poor and strongly nepheline (ne) normative and therefore unlike the silicic liquids generated from partial melting of recycled mid-oceanic-ridge basalt (MORB). High-pressure partial-melting experiments on a garnet pyroxenite (MIX1G) at 2.0 and 2.5 GPa produce strongly ne-normative and silica-poor partial melts. The MIX1G solidus is located below 1350 and 1400 °C at 2 and 2.5 GPa, respectively, slightly cooler than the solidus of dry peridotite. Chemographic analysis suggests that natural garnet pyroxenite compositions straddle a thermal divide. Whereas partial melts of compositions on the silica-excess side of the divide (such as recycled MORB) are silica saturated, those from silica-deficient garnet pyroxenites can be alkalic and have similarities to low-silica OIB. Although the experimental partial melts are too rich in Al2O3 to be parental to highly undersaturated OIB suites, higher-pressure (4–5 GPa) partial melting of garnet pyroxenite is expected to yield more appropriate parental liquids for OIB lavas. Silica-deficient garnet pyroxenite, which may originate by mixing of MORB with peridotite, or by recycling of other mafic lithologies, represents a plausible source of OIB that may resolve the apparent contradiction of strongly alkalic composition with isotopic ratios characteristic of a recycled component. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
0
Paper
Citation506
0
Save
0

High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts

Tetsu Kogiso et al.Nov 8, 2003
Many ocean island basalts (OIB) that have isotopic ratios indicative of recycled crustal components in their source are silica-undersaturated and unlike silicic liquids produced from partial melting of recycled mid-ocean ridge basalt (MORB). However, experiments on a silica-deficient garnet pyroxenite, MIX1G, at 2.0–2.5 GPa show that some pyroxenite partial melts are strongly silica-undersaturated [M.M. Hirschmann et al., Geology 31 (2003) 481–484]. These low-pressure liquids are plausible parents of alkalic OIB, except that they are too aluminous. We present new partial melting experiments on MIX1G between 3.0 and 7.5 GPa. Partial melts at 5.0 GPa have low SiO2 (<48 wt%), low Al2O3 (<12 wt%) and high CaO (>12 wt%) at moderate MgO (12–16 wt%), and are more similar to primitive OIB compositions than lower-pressure liquids of MIX1G or experimental partial melts of anhydrous or carbonated peridotite. Solidus temperatures at 5.0 and 7.5 GPa are 1625 and 1825°C, respectively, which are less than 50°C cooler than the anhydrous peridotite solidus. The liquidus temperature at 5.0 GPa is 1725°C, indicating a narrow melting interval (∼100°C). These melting relations suggest that OIB magmas can be produced by partial melting of a silica-deficient pyroxenite similar to MIX1G if its melting residue contains significant garnet and lacks olivine. Such silica-deficient pyroxenites could be produced by interaction between recycled subducted oceanic crust and mantle peridotite or could be remnants of ancient oceanic lower crust or delaminated lower continental crust. If such compositions are present in plumes ascending with potential temperatures of 1550°C, they will begin to melt at about 5.0 GPa and produce appropriate partial melts. However, such hot plumes may also generate partial melts of peridotite, which could dilute the pyroxenite-derived partial melts.
0
Paper
Citation421
0
Save
0

Evidence for suboceanic small-scale convection from a “garnet”-bearing lherzolite xenolith from Aitutaki Island, Cook Islands

Norikatsu Akizawa et al.Jul 4, 2024
Abstract Garnet peridotite xenoliths have been rarely reported from suboceanic mantle. Petrographic and geochemical characteristics of garnet-bearing oceanic peridotite xenoliths provide precious information on dynamics of the suboceanic lithosphere and asthenosphere interaction. We examined a lherzolite xenolith included in olivine nephelinite lava from Aitutaki Island, a member of the Cook-Austral volcanic chain. The lherzolite xenolith contains reddish fine-grained (< 5 µm in size) mineral aggregates (FMAs) with size range of 0.5–6 mm, consisting of olivine, calcic and sodic plagioclases, aluminous spinel, native iron, and nepheline. Microstructural observations and chemical data corroborate that the FMA is a decomposed pyrope-rich garnet including chromian spinel grains with an irregular highly indented morphology in the center. The FMA is surrounded by pyroxene-poor and olivine-rich aureole. The spatial and morphological relationships of FMA and chromian spinel with pyroxene-depleted margin suggest a reaction of aluminous spinel + pyroxenes → pyrope-rich garnet + olivine, which requires a compression before decomposition of the garnet to FMA. An orthopyroxene grain shows slight but clear chemical zoning characterized by increase in Al, Ca, and Cr from the grain center to the rim. The zoning patterns of Al and Ca in the orthopyroxene grain can be modeled by diffusion-controlled solid-state reactions induced by pressure and temperature changes, keeping surface concentrations in equilibrium with the other coexisting mineral phases. The results indicate that the mantle, from which the lherzolite xenolith was derived, underwent isothermal decompression followed by a weak heating on a time scale of a few tenths of million years before the xenolith extraction. From the deduced compression and decompression histories, we hypothesize that the mantle beneath Aitutaki Island was once dragged down to a garnet-stable deep mantle region and brought up later by small-scale sublithospheric convection.
0
Paper
Citation1
0
Save
0

Stable carbon and oxygen isotope signatures of mantle-derived calcite in Aitutaki lherzolite xenolith: Implications for organic carbon cycle in the oceanic mantle

Norikatsu Akizawa et al.Jul 26, 2024
Carbon isotope data is desired to be increased to promote the understanding of carbon cycle throughout in the Earth. Diamond is a key carbonaceous tool to study deep carbon cycle, but most diamond occurrences are limited from kimberlite pipes in the continental region. Recently, micron-sized diamonds have been discovered from the oceanic region and investigated to understand deep carbon cycle in the oceanic mantle. However, some fundamental cautions have been issued on the oceanic diamonds because some of them could be of artificial origin. Hence, alternative oceanic mantle-derived carbonaceous material is needed to increase oceanic carbon isotope data. We report micron-sized calcite vein in a lherzolite xenolith hosted by enriched mantle I (EM1)-type olivine nephelinite from Aitutaki Island, Cook Islands in the southern Pacific. With employing various techniques to determine carbon and oxygen isotope compositions from sub-micrograms of calcite, we demonstrate that carbonaceous fluid originated from EM1-type mantle source exhibited organic carbon signature based on its light carbon isotope composition along with petrographic characteristics of the calcite vein. The oceanic mantle hosts organic carbon in places due to the recycling of surface materials.
0
0
Save