Abstract Synthesizing fine chemicals and valuable pharmaceutical intermediates through selective catalytic oxidation of alcohols is indispensable and crucial. However, the conventional methods of alcohol oxidation have inevitable drawbacks, including harsh reaction conditions and environmental pollution. Thus, it is imperative to develop efficient catalytic oxidation systems for alcohols. Herein, we successfully synthesized a 15 wt %PI‐TiO 2 composite by a one‐step solid‐state heating polymerization technique. This catalyst exhibits excellent responsiveness to visible light and demonstrates remarkable catalytic activity. Furthermore, TEMPO was introduced as a cocatalyst to construct a PI‐TiO 2 /TEMPO/O 2 system for the catalytic oxidation of alcohols. In comparison to the individual effects of PI or TiO 2 , this system showcases improved catalytic activity and broader substrate applicability. As a result, the conversion efficiency of benzyl alcohol increases by 3.44 times and 2.26 times, respectively. This research not only introduces a novel approach for preparing visible light‐active PI‐TiO 2 catalysts but also indicates the significance of establishing an efficient electron transfer process in alcohol catalytic oxidation.