AM
Alan MacDonald
Author with expertise in Stable Isotope Analysis of Groundwater and Precipitation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
4,385
h-index:
44
/
i10-index:
121
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quantitative maps of groundwater resources in Africa

Alan MacDonald et al.Apr 20, 2012
In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66 million km3 (0.36–1.75 million km3). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.1–0.3 l s−1), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes ( > 5 l s−1) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level.
0
Paper
Citation551
0
Save
0

Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations

Alan MacDonald et al.Aug 29, 2016
Increasing groundwater abstraction in the Indo-Gangetic Basin poses a threat to groundwater supplies. In situ observations reveal that sustainable groundwater in much of the region is limited more by contamination than depletion. Groundwater abstraction from the transboundary Indo-Gangetic Basin comprises 25% of global groundwater withdrawals, sustaining agricultural productivity in Pakistan, India, Nepal and Bangladesh. Recent interpretations of satellite gravity data indicate that current abstraction is unsustainable1,2,3, yet these large-scale interpretations lack the spatio-temporal resolution required to govern groundwater effectively4,5. Here we report new evidence from high-resolution in situ records of groundwater levels, abstraction and groundwater quality, which reveal that sustainable groundwater supplies are constrained more by extensive contamination than depletion. We estimate the volume of groundwater to 200 m depth to be >20 times the combined annual flow of the Indus, Brahmaputra and Ganges, and show the water table has been stable or rising across 70% of the aquifer between 2000 and 2012. Groundwater levels are falling in the remaining 30%, amounting to a net annual depletion of 8.0 ± 3.0 km3. Within 60% of the aquifer, access to potable groundwater is restricted by excessive salinity or arsenic. Recent groundwater depletion in northern India and Pakistan has occurred within a longer history of groundwater accumulation from extensive canal leakage. This basin-wide synthesis of in situ groundwater observations provides the spatial detail essential for policy development, and the historical context to help evaluate recent satellite gravity data.
0
Paper
Citation395
0
Save
0

Climate Change and Water and Sanitation: Likely Impacts and Emerging Trends for Action

Guy Howard et al.Aug 2, 2016
Climate change represents the most significant challenge of the twenty-first century and poses risks to water and sanitation services. Concerns for water supply include damage to infrastructure from flooding, loss of water sources due to declining rainfall and increasing demand, and changes in the water quality of water sources and within distribution of water. Sanitation concerns include damage and loss of services from floods and reduced carrying capacity of waters receiving wastewater. Key actions to reduce climate risks include the integration of measures of climate resilience into water safety plans, as well as improved accounting and management of water resources. Policy prescriptions on technologies for service delivery and changes in management models offer potential to reduce risks, particularly in low-income settings. Water and sanitation services contribute to greenhouse gas emissions. Choice of wastewater treatment technologies, improved pumping efficiency, use of renewable sources of energy, and within-system generation of energy offer potential for reducing emissions. Overall, greater attention and research are required to understand, plan for, and adapt to climate change in water and sanitation services. As with many other climate change adaptations, the likely benefits from no-regrets solutions are likely to outweigh the costs of investment.
0
Paper
Citation203
0
Save
0

High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation

Anna Pazola et al.Jul 5, 2024
Abstract. Groundwater recharge is a key hydrogeological variable that informs the renewability of groundwater resources. Long-term average (LTA) groundwater recharge provides a measure of replenishment under the prevailing climatic and land-use conditions and is therefore of considerable interest in assessing the sustainability of groundwater withdrawals globally. This study builds on the modelling results by MacDonald et al. (2021), who produced the first LTA groundwater recharge map across Africa using a linear mixed model (LMM) rooted in 134 ground-based studies. Here, continent-wide predictions of groundwater recharge were generated using random forest (RF) regression employing five variables (precipitation, potential evapotranspiration, soil moisture, normalised difference vegetation index (NDVI) and aridity index) at a higher spatial resolution (0.1° resolution) to explore whether an improved model might be achieved through machine learning. Through the development of a series of RF models, we confirm that a RF model is able to generate maps of higher spatial variability than a LMM; the performance of final RF models in terms of the goodness of fit (R2=0.83; 0.88 with residual kriging) is comparable to the LMM (R2=0.86). The higher spatial scale of the predictor data (0.1°) in RF models better preserves small-scale variability from predictor data than the values provided via interpolated LMMs; these may prove useful in testing global- to local-scale models. The RF model remains, nevertheless, constrained by its representation of focused recharge and by the limited range of recharge studies in humid, equatorial Africa, especially in the areas of high precipitation. This confers substantial uncertainty in model estimates.
0
Paper
Citation1
0
Save
0

Groundwater recharge in basement aquifers in subhumid drylands of sub-Saharan Africa

D. Mudimbu et al.Nov 14, 2024
Abstract Characterising groundwater recharge is fundamental for sustainable groundwater management. This study focuses on assessing recharge in drylands using four experimental plots under different land-use practices in crystalline basement aquifers in three southern African countries (Chitedze in Malawi, Kabeleka and Liempe in Zambia, and Domboshawa in Zimbabwe). Several methods, including water-table fluctuation (WTF), chloride mass balance (CMB), water stable isotopes (δ 18 O and δ 2 H) and dissolved gases, were used to quantify annual recharge rates, recharge sources and groundwater residence times. This informed the development of a conceptual model of groundwater recharge in unpumped basement aquifers. Using WTF, across all sites/years, the range of annual median recharge was found to be in the range of 2.8–14.1% rainfall. Recharge was observed for most years across all sites and was controlled by hydrogeological settings, rainfall totals and antecedent conditions, i.e. the groundwater level at the end of the preceding dry season. Based on groundwater level observations and water stable isotope analysis, for sites where there has been extensive use of conservation agriculture (in time and space), there is some evidence of earlier and greater recharge compared to conventional agriculture at paired sites. Additionally, there is evidence of high lateral connectivity in shallow, permeable layers and high local connectivity in the aquifers which facilitate discharge to surface drainage. This leads to a lower proportion of modern recharge at these unpumped sites (typically <10%) compared to other studies using comparable methods in pumped boreholes, which highlights the importance of groundwater capture due to pumping.
Load More