LL
Libing Liu
Author with expertise in Aggregation-Induced Emission in Fluorescent Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(0% Open Access)
Cited by:
2,724
h-index:
61
/
i10-index:
245
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Conjugated Polymer/Porphyrin Complexes for Efficient Energy Transfer and Improving Light-Activated Antibacterial Activity

Chengfen Xing et al.Aug 24, 2009
With the increasing antibiotic resistance of microorganisms, there is a growing interest in the design and development of new materials that are effective in killing bacteria to replace conventional antibiotics. Herein, a new anionic water-soluble polythiophene (PTP) and a cationic porphyrin (TPPN) are synthesized and characterized. They can form a complex through electrostatic interactions, and efficient energy transfer from PTP to TPPN occurs upon irradiation under white light (400−800 nm). The energy of TPPN transfers to triplet by intersystem crossing, followed by sensitization of oxygen molecule to enhance the efficiency of singlet oxygen generation related to TPPN itself. The positive charges of PTP/TPPN complex promote its adsorption to the negatively charged bacteria membranes of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis through electrostatic interactions, and the singlet oxygen effectively kills the bacteria. The photosensitized inactivation of bacteria for the PTP/TPPN complex is efficient, and about 70% reduction of bacterial viability is observed after only 5 min of irradiation with white light at a fluence rate of 90 mW·cm−2 (27 J·cm−2). The technique provides a promising application in photodynamic inactivation of bacteria on the basis of enhanced energy transfer offered by light-harvesting conjugated polymers.
0
Citation316
0
Save
0

Cationic Conjugated Polymers for Optical Detection of DNA Methylation, Lesions, and Single Nucleotide Polymorphisms

Xinrui Duan et al.Dec 2, 2009
Simple, rapid, and sensitive technologies to detect nucleic acid modifications have important applications in genetic analysis, clinical diagnosis, and molecular biology. Because genetic modifications such as single nucleotide polymorphisms (SNP), DNA methylation, and other lesions can serve as hallmarks of human disease, interest in such methods has increased in recent years. This Account describes a new strategy for the optical detection of these DNA targets using cationic conjugated polymers (CCPs). Because of their unique signal amplification properties, researchers have extensively investigated conjugated polymers as optical transducers in highly sensitive biosensors. Recently, we have shown that cationic polyfluorene can detect SNPs within the DNA of clinical samples. When we incorporated deoxyguanosine triphosphate (dGTP-Fl) into the DNA chain at an SNP site where the target/probe pair is complementary, we observed higher fluorescence resonance energy transfer (FRET) efficiency between cationic polyfluorene and fluorescein label on the dGTP. By monitoring the change in emission intensity of cationic polyfluorene or fluorescein, we identified the homozygous or heterozygous SNP. The high sensitivity of this assay results from the 10-fold enhancement of fluorescein emission intensity by the FRET from polyfluorene. This method can detect allele frequencies (the proportion of all copies of a gene that is made up of a particular gene variant) as low as 2%. Using this novel method, we clearly discriminated among the SNP genotypes of 76 individuals of Chinese ancestry. Improving on this initial system, we designed a method for multicolor and one-tube SNP genotyping assays based on cationic polyfluorene using fluorescein-labeled deoxyuridine triphosphate (dUTP-Fl) and Cy3-labeled deoxycytidine triphosphate (dCTP-Cy3) in extension reactions. We also developed a one-step method for direct detection of SNP genotypes from genomic DNA by combining allele-specific PCR with CCPs. In 2008, we developed a new method for DNA methylation detection based on single base extension reaction and CCPs. Treatment of DNA with bisulfite followed by PCR amplification converts unmethylated DNA into a C/T polymorphism, which allows us to characterize the methylation status of the target DNA. Furthermore, we used CCPs to detect DNA lesions caused by ultraviolet light irradiation for the first time. By monitoring the color change of cationic polythiophene before and after DNA cleavage, we also detected oxidative damage to DNA by hydroxyl radical. These CCP-based new assays avoid primer labeling, cumbersome workups, and sophisticated instruments, leading to simpler procedures and improved sensitivity. We expect that these features could lead to major advances in human disease diagnostics and genomic study in the near future.
0
Citation269
0
Save
0

Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics

Shanshan Liu et al.Jan 21, 2018
The employment of physical light sources in clinical photodynamic therapy (PDT) system endows it with a crucial defect in the treatment of deeper tissue lesions due to the limited penetration depth of light in biological tissues. In this work, we constructed for the first time an electric driven luminous system based on electrochemiluminescence (ECL) for killing pathogenic bacteria, where ECL is used for the excitation of photosensitizer instead of a physical light source to produce reactive oxygen species (ROS). We named this new strategy as ECL-therapeutics. The mechanism for the ECL-therapeutics is dependent on the perfect spectral overlap and energy transfer from the ECL generated by luminol to photosensitizer, cationic oligo(p-phenylenevinylene) (OPV), to sensitize the surrounding oxygen molecule into ROS. Furthermore, taking into account the practical application of our ECL-therapeutics, we used flexible hydrogel to replace the liquid system to develop hydrogel antibacterial device. Because the chemical reaction is a slow process in the hydrogel, the luminescence could last for more than 10 min after only electrifying for five seconds. This unique persistent luminescence characteristic with long afterglow life makes them suitable for persistent antibacterial applications. Thus, stretchable and persistent hydrogel devices are designed by integrating stretchable hydrogel, persistent ECL and antibacterial function into hydrogel matrices. This novel strategy avoids the employment of external light source, making it simple, convenient and controllable, which exploits a new field for ECL beyond sensors and also opens up a new model for PDT.
Load More