LY
Laiqing Yan
Author with expertise in Mammalian Circadian Rhythms and Physiology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mitochondria of Porcine Oocytes Synthesize Melatonin, Which Improves Their In Vitro Maturation and Embryonic Development

Tianqi Zhu et al.Jul 7, 2024
The in vitro maturation efficiency of porcine oocytes is relatively low, and this limits the production of in vitro porcine embryos. Since melatonin is involved in mammalian reproductive physiology, in this study, we have explored whether endogenously produced melatonin can help in porcine oocyte in vitro maturation. We have found, for the first time in the literature, that mitochondria are the major sites for melatonin biosynthesis in porcine oocytes. This mitochondrially originated melatonin reduces ROS production and increases the activity of the mitochondrial respiratory electron transport chain, mitochondrial biogenesis, mitochondrial membrane potential, and ATP production. Therefore, melatonin improves the quality of oocytes and their in vitro maturation. In contrast, the reduced melatonin level caused by siRNA to knockdown AANAT (siAANAT) is associated with the abnormal distribution of mitochondria, decreasing the ATP level of porcine oocytes and inhibiting their in vitro maturation. These abnormalities can be rescued by melatonin supplementation. In addition, we found that siAANAT switches the mitochondrial oxidative phosphorylation to glycolysis, a Warburg effect. This metabolic alteration can also be corrected by melatonin supplementation. All these activities of melatonin appear to be mediated by its membrane receptors since the non-selective melatonin receptor antagonist Luzindole can blunt the effects of melatonin. Taken together, the mitochondria of porcine oocytes can synthesize melatonin and improve the quality of oocyte maturation. These results provide an insight from a novel aspect to study oocyte maturation under in vitro conditions.
0
Citation1
0
Save
0

Protective Effects of Exogenous Melatonin Administration on White Fat Metabolism Disruption Induced by Aging and a High-Fat Diet in Mice

Dongying Lv et al.Dec 9, 2024
Obesity has emerged as a major risk factor for human health, exacerbated by aging and changes in dietary habits. It represents a significant health challenge, particularly for older people. While numerous studies have examined the effects of obesity and aging on fat metabolism independently, research on their combined effects is limited. In the present study, the protective action against white fat accumulation after a high-fat diet (HFD) exerted by exogenous melatonin, a circadian hormone endowed with antioxidant properties also involved in fat metabolism, was investigated in a mouse model. For this purpose, a battery of tests was applied before and after the dietary and melatonin treatments of the animals, including epididymal white adipose tissue (eWAT) histological evaluations, transcriptomic and lipidomic analyses, real-time PCR tests, immunofluorescence staining, Western blot, the appraisal of serum melatonin levels, and transmission electron microscopy. This study found that aged mice on a high-fat diet (HFD) showed increased lipid deposition, inflammation, and reduced antioxidant glutathione (GSH) levels compared to younger mice. Lipidomic and transcriptomic analyses revealed elevated triglycerides, diglycerides, ceramides, and cholesterol, along with decreased sphingomyelin and fatty acids in eWAT. The genes linked to inflammation, NF-κB signaling, autophagy, and lipid metabolism, particularly the melatonin and glutathione pathways, were significantly altered. The aged HFD mice also exhibited reduced melatonin levels in serum and eWAT. Melatonin supplementation reduced lipid deposition, increased melatonin and GSH levels, and upregulated AANAT and MTNR1A expression in eWAT, suggesting that melatonin alleviates eWAT damage via the MTNR1A pathway. It also suppressed inflammatory markers (e.g., TNF-α, NLRP3, NF-κB, IL-1β, and CEBPB) and preserved mitochondrial function through enhanced mitophagy. This study highlights how aging and HFD affect lipid metabolism and gene expression, offering potential intervention strategies. These findings provide important insights into the mechanisms of fat deposition associated with aging and a high-fat diet, suggesting potential intervention strategies.
0

Localization and Molecular Cloning of the ASMT Gene for Melatonin Synthesis in Pigs

Laiqing Yan et al.Jan 13, 2025
Melatonin is synthesized in multiple tissues and organs of pigs, and existing studies have shown the presence of the melatonin-synthesizing enzyme ASMT protein. However, the genomic information for the ASMT gene has been lacking. The aim of this study was to locate the genomic information of the ASMT gene in pigs using comparative genomics analysis and then obtain the coding region information through molecular cloning. First, using the NCBI Genome Data Viewer, we found that in most animals, the AKAP17A gene is often located next to the ASMT gene, with both genes arranged in the same direction. Similarly, the P2RY8 gene is commonly adjacent to the ASMTL gene, also in the same orientation. We also discovered that the ASMTL gene is frequently adjacent to the ASMT gene and arranged in the opposite direction. Using the “three-point localization” principle, we inferred the position of the ASMT gene based on the coordinates of AKAP17A and ASMTL in pigs. Our results revealed that on the pig X chromosome, a gene called LOC110258194 is located next to the AKAP17A and ASMTL genes, and its arrangement aligns with the ASMT gene in other species. Additionally, Ensembl contains a gene, ENSSSCG00000032659, at the same position, with completely overlapping exons, though it is not annotated as ASMT. Further analysis using the TreeFam tool from EMBL-EBI and the CDD tool from NCBI revealed that LOC110258194 and ENSSSCG00000032659 do not contain the typical Maf domain of ASMTL and, thus, should not be annotated as ASMTL, but rather as the ASMT gene. Using a slow-down PCR method for high-GC content genes, we successfully cloned the full CDS region of the pig ASMT gene and identified a new transcript missing Exon 6 and Exon 7. This transcript was submitted to NCBI and assigned the GenBank accession number MW847601. Our results represent the first successful localization of the ASMT gene in pigs, the first cloning of the ASMT gene’s coding region, and the first discovery of a new transcript of the pig ASMT gene.