LN
Lewis Nkenyereye
Author with expertise in Face Recognition and Analysis Techniques
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
1
h-index:
20
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

XAI Driven Intelligent IoMT Secure Data Management Framework

Wei Liu et al.Jan 1, 2024
The Internet of Medical Things (IoMT) has transformed traditional healthcare systems by enabling real-time monitoring, remote diagnostics, and data-driven treatment. However, security and privacy remain significant concerns for IoMT adoption due to the sensitive nature of medical data. Therefore, we propose an integrated framework leveraging blockchain and explainable artificial intelligence (XAI) to enable secure, intelligent, and transparent management of IoMT data. First, the traceability and tamper-proof of blockchain are used to realize the secure transaction of IoMT data, transforming the secure transaction of IoMT data into a two-stage Stackelberg game. The dual-chain architecture is used to ensure the security and privacy protection of the transaction. The main-chain manages regular IoMT data transactions, while the side-chain deals with data trading activities aimed at resale. Simultaneously, the perceptual hash technology is used to realize data rights confirmation, which maximally protects the rights and interests of each participant in the transaction. Subsequently, medical time-series data is modeled using bidirectional simple recurrent units to detect anomalies and cyberthreats accurately while overcoming vanishing gradients. Lastly, an adversarial sample generation method based on local interpretable model-agnostic explanations is provided to evaluate, secure, and improve the anomaly detection model, as well as to make it more explainable and resilient to possible adversarial attacks. Simulation results are provided to illustrate the high performance of the integrated secure data management framework leveraging blockchain and XAI, compared with the benchmarks.
0

AiCarePWP: Deep learning-based novel research for Freezing of Gait forecasting in Parkinson

Hemant Ghayvat et al.Jun 7, 2024
Episodes of Freezing of Gait (FoG) are among the most debilitating motor symptoms of Parkinson's Disease (PD), leading to falls and significantly impacting patients' quality of life. Accurate assessment of FoG by neurologists provides crucial insights into patients' conditions and disease symptoms. This proposed strategy involves utilizing a Weighted Fuzzy Logic Controller, Kalman Filter, and Kaiser–Meyer–Olkin test to detect the gait parameters while walking, resting, and standing phases. Parameters such as neuromodulation format, intensity, duration, frequency, and velocity are computed to pre-empt freezing episodes, thus aiding their prevention. The AiCarePWP is a wearable electronics device designed to identify instances when a patient is on the brink of experiencing a freezing episode and subsequently deliver a brief electrical impulse to the patient's shank muscles to stimulate movement. The AiCarePWP wearable device aims to identify impending freezing episodes in PD patients and deliver brief electrical impulses to stimulate movement. The study validates this innovative approach using plantar insoles with a 3D accelerometer and electrical stimulator, analysing data from the inertial measuring unit and plantar-pressure foot data to detect and predict FoG. Using a Convolutional Neural Network-based model, the study evaluated 47 gait features for their ability to differentiate resting, standing, and walking conditions. Variable selection was based on sensitivity, specificity, and overall accuracy, followed by Principal Component Analysis and Varimax rotation to extract and interpret factors. Factors with eigenvalues exceeding 1.0 were retained, and 37 features were retained. This study validates CNN's effectiveness in detecting FoG during various activities. It introduces a novel cueing method using electrical stimulation, which improves gait function and reduces FoG incidence in PD patients. Trustworthy wearable devices, based on Artificial Intelligence of Things (AIoT) and Artificial Intelligence of Medical Things (AIoMT), have been developed to support such interventions.