DK
Daehan Kwak
Author with expertise in Machine Learning in Healthcare and Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
3,242
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Internet of Things for Health Care: A Comprehensive Survey

S. Islam et al.Jan 1, 2015
The Internet of Things (IoT) makes smart objects the ultimate building blocks in the development of cyber-physical smart pervasive frameworks. The IoT has a variety of application domains, including health care. The IoT revolution is redesigning modern health care with promising technological, economic, and social prospects. This paper surveys advances in IoT-based health care technologies and reviews the state-of-the-art network architectures/platforms, applications, and industrial trends in IoT-based health care solutions. In addition, this paper analyzes distinct IoT security and privacy features, including security requirements, threat models, and attack taxonomies from the health care perspective. Further, this paper proposes an intelligent collaborative security model to minimize security risk; discusses how different innovations such as big data, ambient intelligence, and wearables can be leveraged in a health care context; addresses various IoT and eHealth policies and regulations across the world to determine how they can facilitate economies and societies in terms of sustainable development; and provides some avenues for future research on IoT-based health care based on a set of open issues and challenges.
0

A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion

Farman Ali et al.Jun 26, 2020
The accurate prediction of heart disease is essential to efficiently treating cardiac patients before a heart attack occurs. This goal can be achieved using an optimal machine learning model with rich healthcare data on heart diseases. Various systems based on machine learning have been presented recently to predict and diagnose heart disease. However, these systems cannot handle high-dimensional datasets due to the lack of a smart framework that can use different sources of data for heart disease prediction. In addition, the existing systems utilize conventional techniques to select features from a dataset and compute a general weight for them based on their significance. These methods have also failed to enhance the performance of heart disease diagnosis. In this paper, a smart healthcare system is proposed for heart disease prediction using ensemble deep learning and feature fusion approaches. First, the feature fusion method combines the extracted features from both sensor data and electronic medical records to generate valuable healthcare data. Second, the information gain technique eliminates irrelevant and redundant features, and selects the important ones, which decreases the computational burden and enhances the system performance. In addition, the conditional probability approach computes a specific feature weight for each class, which further improves system performance. Finally, the ensemble deep learning model is trained for heart disease prediction. The proposed system is evaluated with heart disease data and compared with traditional classifiers based on feature fusion, feature selection, and weighting techniques. The proposed system obtains accuracy of 98.5%, which is higher than existing systems. This result shows that our system is more effective for the prediction of heart disease, in comparison to other state-of-the-art methods.
0
Citation584
0
Save
0

Sensors Faults Classification and Faulty Signals Reconstruction Using Deep Learning

Nayab Fatima et al.Jan 1, 2024
Sensor fault classification and reconstruction frameworks are crucial for the stable, safe, and reliable operations of Structural Health Monitoring (SHM) systems. Existing literature addressing reliability and efficiency is confronted with several challenges; especially, lacking a combined framework addressing both issues of classification and reconstruction at the same time. To tackle these issues, this paper proposes a fault-tolerant mechanism that uses various combinations of Deep Learning (DL) techniques to ensure the effectiveness and reliability of SHM systems in a resource-efficient way. The proposed mechanism is an integrated framework consisting of two modules: the sensor faults classification module and the faulty signal reconstruction module. We develop integrated architectures of CNN and RNN to classify faulty signals and employ various architectures of LSTM models for faulty signal reconstruction. Both modules are tested on the benchmark Canton Tower dataset. We augment the dataset with faulty signals created through simulations for an accurate analysis. The sensor faults classification module is evaluated by utilizing precision, recall, F1-score, and accuracy; it achieves a maximum accuracy of 94%. Additionally, the root mean square error (RMSE) value for the faulty signals' reconstruction stands at zero. The experimental results show that our proposed mechanism outperforms existing state-of-the-art techniques regarding sensor fault classification accuracy and the quality of reconstructed faulty signals.
0
Paper
Citation1
0
Save