Publish
Home
Live
new
RH Journal
ResearchCoin
Grants
Funding
Browse
Journals
Hubs
Tools
Lab Notebook
Beta
Reference Manager
Resources
Verify Identity
Community
Support
About
Terms
Privacy
Issues
Docs
Author
Log in
Sign up
JW
Ji Wei
Author with expertise in Graphene: Properties, Synthesis, and Applications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
1
(100% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Overview
Publications
1
Peer Reviews
Comments
Grants
Publications
0
Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da
et al.
Jul 10, 2024
Abstract The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications. Electron irradiation has demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise. It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities. Here, we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane. By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope (STEM), we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice. The resultant SiC monolayers seamlessly connect with the graphene lattice, forming a planar structure distinct by a wide direct bandgap. Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion, providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional (2D) monolayers.
Materials Chemistry
Electrical And Electronic Engineering
0
Paper
Materials Chemistry
1
0
Save